商用電源の場合

プレミアム効率モータは、従来の標準効率モータと特性が異なります。 特に既設品からの交換時には、動力や周辺機器の見直しが必要です。

■モータ特性

【例】

モータ容量 2.2kW 電源電圧 200V 60Hz

標準効率モータ

モータ回転数: **1700r/min** 始動トルク: 204% 定格電流值: **8.90A** 停動トルク: 229%

始動電流值: 46.9A

プレミアム効率モータ

モータ回転数: **1740r/min** 始動トルク: 297% 定格電流值: 9.32A 停動トルク: 402%

始動電流值: 74.9A

プレミアム効率モータは

- 発生損失を抑えているため、従来の標準効率モータよりも回転速度が速くなります。 運転速度を上げられない用途の場合、モータ回転数の増加に伴う減速比の再検討が必要となります。
- 回転速度が速くなることによって、負荷トルクが標準効率モータと同じまたは増加する場合は、モータ出力も増加します。 負荷条件によっては、標準効率モータよりも消費電力が増えることがあります。
- ●銅損低減のためモータの巻線抵抗を低くしており、 始動電流・始動トルク・停動トルク(最大トルク)が標準効率モータに対して増加します。
- ●ブレーカなどの周辺機器の変更が必要になる場合があります。

■始動・停止頻度と減速機の負荷係数

標準効率モータ										
始動・停止頻度		~3時間/	日	~	10時間/	日	~24時間/日			
(回/時間)	I	II	III	- 1	II	III	- 1	Ш	III	
10 以下	0.80	1.00	1.30	1.00	1.15	1.50	1.20	1.30	1.65	
~200以下	0.85	1.20	1.45	1.10	1.35	1.65	1.30	1.50	1.85	
~500以下	0.90	1.30	1.55	1.15	1.50	1.80	1.40	1.65	2.00	

プレミアム効率モータ										
始動・停止頻度	_	~3時間/	B	~	10時間/	日	~24時間/日		B	
(回/時間)	I	- II	III	- 1	II	III	- 1	II	III	
1 以下	0.80	1.00	1.30	1.00	1.15	1.50	1.20	1.30	1.65	
~3 以下	0.80	1.00	1.35	1.00	1.25	1.60	1.20	1.40	1.70	
~10以下	0.80	1.20	1.45	1.00	1.35	1.70	1.20	1.50	1.80	
~60以下	0.80	1.30	1.55	1.00	1.45	1.75	1.25	1.65	2.00	

● プレミアム効率モータは始動トルク・停動トルク (最大トルク) が大きいため、選定手順や始動・停止頻度と減速機の負荷係数 が標準効率モータと異なっています。(詳細はB18頁、C10頁参照)

インバータ駆動の場合

標準効率モータと同様にご使用できますが、インバータのパラメータ(定格電流値など)は異なります。 既設品をプレミアム効率モータに交換、インバータはそのままご使用する場合は、インバータのパラメータを 変更する必要があります。

■電子サーマル設定

● 標準効率モータより定格電流値が高いため、電子サーマルの設定値を変更する必要があります。

■V/F制御・固定トルクブースト運転時

● 標準効率モータ用のトルクブースト設定値では、低速運転時に電流が流れすぎることがあります。 電流が過大に流れる場合は設定値を下げてください。

■センサレス制御運転時

単ヤモータを交換後、オートチューニングを行ってください。

モータブレーキについて

プレミアム効率モータのブレーキは、従来の標準 【例】モータ容量 2.2kW 効率モータやインバータ用AFモータのブレーキと 制動時の動作遅れ時間や標準ブレーキトルクなど の特性が異なります。

特に既設品からの交換時にはブレーキによる停止 位置がずれることがあり、ブレーキの制動回路や インバータ駆動におけるブレーキ制動の制御信号 タイミングの見直しが必要になる場合があります。

		標準効率	革モータ	プレミアム効率モータ					
ブレーキ特性		三相モータ	インバータ用 AFモータ	プレミアム効率 三相モータ	インバータ用 プレミアム効率 三相モータ				
ブレーキ形式		FB-3D	FB-5B	FB-3E					
ブレーキトルク(N·m)		22	37	22					
制動時の 動作遅れ 時間 (s)	普通制動回路 (同時切り回路)	0.3~0.4	-	0.75~0.95	-				
	インバータ用 普通制動回路 (別切り回路)	0.15~0.2	0.2~0.25	0.4~0.5					
	急制動回路	0.01~0.02	0.01~0.02	0.02^	~0.04				