## Sumitomo DriveTechnologies


Table of Contents
Features ..... 2
Specifications ..... 6
Protective Functions ..... 9
Outline Drawing ..... 10
Main Circuit Terminals ..... 12
Control Circuit Terminals ..... 13
Terminal Description ..... 14
Connecting Diagram ..... 15
List of Parameters ..... 16
Accessories and Options ..... 37
Braking Unit and Braking Resistor ..... 38
Peripheral Equipment ..... 42
Notes to Inverter Users ..... 49
Warranty ..... 51


## Features

## Inverter HF-430series is much easier to use! High Performance Inverter HF-430NEO

## Easy operation using the colored liquid crystal display!

- Intuitive, easy-to-use LCD operator is standard.
- Easily monitor, set, or review operational data and parameters.

- Powerful operation for the Geared motor!
- The sensor-less vector control provides High starring torque and High performance.
(Starting Torque 150\% or more)


Cyclo Gearmotor

## Easy data copy to multiple inverters!

- Operation panel is removable and memory is built in.

Parameter data can be copied to multiple inverters, which allows users to replace inverter in a short working time.


## Optional Cassette

- Optional cassettes are able to connect easily to HF-430NEO.
- Optional cassette is preparing a communication option and Analog Input/output.

Analog Input/output: P1-AG
Communication: PROFIBUS, PROFINET, CC-Link

## Easy Maintenance

- Cooling fun and the capacitor for the main circuit is designed for 10 years life.
- When the life of component (cooling fan or capacitor) is near its end, an alarm can be generated based on self-diagnosis.
- If the battery (CR2023) is used, real time data is retained even when the power is turn off.


## Power Range

| Voltage class (Input/Rated Output) | Applicable Motor(kW) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5.5 | 7.5 | 11 | 15 | 22 | 30 | 37 | 45 | 55 |
| 3-phase 200V/3-phase 200V |  |  |  |  |  |  |  |  |  |
| 3-phase 400V/3-phase 400V |  |  |  |  |  |  |  |  |  |

Model No.


## Operation

## Operator Keypad



## Colored Liquid Crystal Display


< Icon Display >

| RUN <br> FR | The motor is in forward running. | LIM | Output frequency is limited by such as <br> overload. |
| :---: | :--- | :---: | :--- |
| RUN <br> RR | The motor is in reverse running. | ALT | The inverter is in overload notice or <br> Thermal notice. |
| TRIP | The inverter is in trip status | NRDY | The inverter cannot be operated in the <br> RUN command. |
| STOP | Operation command is entered, but the <br> Inverter is forced stop. | FAN | The inverter is in Fan life notice state. |
| STOP | The inverter is stopped. <br> Because operation command is OFF. | C | The inverter is in capacitor life of the control <br> board notice state. |

## Monitor Screen and Parameter Setting

| Monitor Screen |  |  |
| :---: | :---: | :---: |
| $\underset{F R}{ }$ | M1 | H01 |
| Output frequency |  |  |
| 29.51 Hz |  |  |
| Output Current |  |  |
| 11.9 A |  |  |
| Input Terminal |  |  |
| LLLLLLLLLLLL |  |  |
| Menu |  | tion |

Parameter Setting Screen

| $\underset{\text { RR }}{\substack{\text { RUN }}}$ |  |  | M1 H03 |
| :---: | :---: | :---: | :---: |
| Output frequency |  |  |  |
|  |  |  | 29.51 Hz |
| FA-01 |  |  |  |
| Set Speed-M (keypad) |  |  |  |
|  |  |  | $\begin{array}{r} 46.49 \mathrm{~Hz} \\ {[0.00-60.00]} \end{array}$ |
| Menu | ofR | 46.49 Hz | $z$ Option |

Wide Monitor Screen
RUN
FR
dA-01
Output frequency
Menu oFR 46.49 Hz

Trip History Screen


It is easy to set the parameters in Scroll mode.

| RUN <br> FR | M1 |
| :--- | ---: | :--- |
| Output frequency |  |



## 200V class Specifications

| Model name |  |  |  | HF4322- |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 5A5 | 7A5 | 011 | 015 | 022 | 030 | 037 | 045 | 055 |
| Applicable motor(4 poles)(kW) |  |  |  | 5.5 | 7.5 | 11 | 15 | 22 | 30 | 37 | 45 | 55 |
| $\begin{aligned} & \stackrel{~}{3} \\ & \stackrel{n}{H} \\ & 0 \end{aligned}$ | Rated output current (A) |  |  | 24.0 | 32.0 | 46.0 | 64.0 | 95.0 | 121 | 145 | 182 | 220 |
|  | Overload current rating |  |  | 150\% 60s / 200\% 3s |  |  |  |  |  |  |  |  |
|  | Rated output voltage |  |  | Three-phase( 3 wire)200 to 240V (Corresponding to the incoming voltage) |  |  |  |  |  |  |  |  |
|  | Rated capacity (kVA) |  | 200 V | 8.3 | 11.1 | 15.9 | 22.1 | 32.9 | 41.9 | 50.2 | 63.0 | 76.2 |
|  |  |  | 240 V | 9.9 | 13.3 | 19.1 | 26.6 | 39.4 | 50.2 | 60.2 | 75.6 | 91.4 |
| $\begin{aligned} & \stackrel{\rightharpoonup}{7} \\ & \stackrel{0}{c} \\ & \hline \end{aligned}$ | Rated input AC voltage ${ }^{\text {Note: }}$ |  |  | Control power supply : Single-phase 200 to 240 V , Permissible AC voltage 170 to $264,50 \mathrm{~Hz} / 60 \mathrm{~Hz}( \pm 5 \%)$ |  |  |  |  |  |  |  |  |
|  |  |  |  | Three-phase(3 wire) 200 to 240 V , Permissible AC voltage 170 to $264,50 \mathrm{~Hz} / 60 \mathrm{~Hz}( \pm 5 \%)$ |  |  |  |  |  |  |  |  |
|  | Power supply capacity (kVA) Note:2 |  |  | 11.3 | 14.5 | 20.9 | 29.0 | 43.1 | 55.3 | 66.2 | 82.6 | 99.8 |
| Carrier frequency variation ${ }^{\text {Note: } 3}$ |  |  |  | $0.5 \sim 16.0 \mathrm{kHz}$ |  |  |  |  |  |  |  |  |
| Starting torque ${ }^{\text {Note:4 }}$ |  |  |  | 150\% |  |  |  |  |  |  |  |  |
| Regenerative brake |  |  |  | Internal BRD circuit (external discharge resistor value) |  |  |  |  | External regenerative braking unit |  |  |  |
| Minimum resistance value( $\Omega$ ) |  |  |  | 16 | 10 | 10 | 7.5 | 5 | - | - | - | - |
| Dimensions ${ }^{\text {Note: }}$ |  | H (height) (mm) |  | 260 | 260 | 260 | 390 | 390 | 540 | 550 | 550 | 700 |
|  |  | W (width) (mm) |  | 210 | 210 | 210 | 245 | 245 | 300 | 390 | 390 | 480 |
|  |  | D (Depth) (mm) |  | 170 | 170 | 170 | 190 | 190 | 195 | 250 | 250 | 250 |
| Protective structure |  |  |  | IP20 / UL open type |  |  |  |  |  |  |  |  |
| Aprox. weight (kg) |  |  |  | 6 | 6 | 6 | 10 | 10 | 22 | 33 | 33 | 47 |

## 400 V class Specifications

| Model name |  |  |  | HF4324- |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | 5A5 | 7A5 | 011 | 015 | 022 | 030 | 037 | 045 | 055 |
| Applicable motor(4 poles)(kW) |  |  |  | 5.5 | 7.5 | 11 | 15 | 22 | 30 | 37 | 45 | 55 |
| $\begin{aligned} & \stackrel{7}{3} \\ & \frac{0}{7} \\ & 0 \end{aligned}$ | Rated output current (A) |  |  | 12.0 | 16.0 | 23.0 | 32.0 | 48.0 | 58.0 | 75.0 | 90.0 | 110 |
|  | Overload current rating |  |  | 150\% 60s / 200\% 3s |  |  |  |  |  |  |  |  |
|  | Rated output voltage |  |  | Three-phase(3 wire)380~500V (Corresponding to the incoming voltage) |  |  |  |  |  |  |  |  |
|  | Rated capacity$(\mathrm{kVA})$ |  | 400 V | 9.7 | 13.1 | 15.9 | 22.2 | 33.3 | 40.2 | 52.0 | 62.1 | 76.2 |
|  |  |  | 480 V | 9.9 | 13.3 | 19.1 | 26.6 | 39.9 | 48.2 | 62.3 | 74.8 | 91.4 |
|  |  |  | 500 V | 10.4 | 13.9 | 19.9 | 27.7 | 41.6 | 50.2 | 65.0 | 77.9 | 95.3 |
|  | Rated input AC voltage ${ }^{\text {Note: }}$ |  |  | Control power supply : Single-phase 380 to 500 V , Permissible AC voltage 323 to $550 \mathrm{~V}, 50 \mathrm{~Hz} / 60 \mathrm{~Hz}( \pm 5 \%)$ |  |  |  |  |  |  |  |  |
|  |  |  |  | Three-phase( 3 wire) 380 to 500 V , Permissible AC voltage 323 to $550,50 \mathrm{~Hz} / 60 \mathrm{~Hz}( \pm 5 \%)$ |  |  |  |  |  |  |  |  |
|  | Power supply capacity (kVA) Note:2 |  |  | 13.4 | 17.2 | 22.7 | 29.0 | 43.5 | 55.3 | 68.0 | 82.6 | 101.6 |
| Carrier frequency variation ${ }^{\text {Note:3 }}$ |  |  |  | $0.5 \sim 16.0 \mathrm{kHz}$ |  |  |  |  |  |  |  |  |
| Starting torque ${ }^{\text {Note:4 }}$ |  |  |  | 150\% |  |  |  |  |  |  |  |  |
| Regenerative Brake |  |  |  | Internal BRD circuit (external discharge resistor value) |  |  |  |  |  |  | External regenerative braking unit |  |
| Minimum resistance value ( $\Omega$ ) |  |  |  | 70 | 35 | 35 | 24 | 20 | 15 | 15 | 10 | 10 |
| Dimensions Note:5 |  | H (height) (mm) |  | 260 | 260 | 260 | 390 | 390 | 540 | 550 | 550 | 550 |
|  |  | W (width) (mm) |  | 210 | 210 | 210 | 245 | 245 | 300 | 390 | 390 | 390 |
|  |  | D (Depth) (mm) |  | 170 | 170 | 170 | 190 | 190 | 195 | 250 | 250 | 250 |
| Protective structure |  |  |  | IP20 / UL open type |  |  |  |  |  |  |  |  |
| Aprox. weight (kg) |  |  |  | 6 | 6 | 6 | 8.5 | 8.5 | 22 | 31 | 31 | 31 |

* ND rating is initial set parameter.(Overload current rating: 150\% 60sec)

Note: 1. Following are for Low Voltage Directive (LVD) compliant.

- Pollution degree 2
- Overvoltage category 3

2. The power supply capacity is the value of the rated output current at 220 V . The value of the impedance at the supply side changes due to the wiring, breaker, input reactor, etc.
3. It is necessary to set the carrier frequency settings [bb101]/ [bb201] equal or greater than the (maximum output frequency $\times$ 10) Hz. For induction motor $\operatorname{IM}$, set the carrier frequency to 2 kHz or more except V/f control. For synchronous motor (SM), permanent magnet motor (PMM) set the carrier frequency to 8 kHz or more.
4. The value is specified for the standard motor controlled by the sensor less vector control when ND rating.

Torque characteristics may vary by the control system and the use of the motor.
5. The key height of keypad are exclued from dimensions. When an option is connected, the depth is increased. Refer to the each optional instruction.

## Common specifications(1)

$\left.\begin{array}{|l|l|l|}\hline \text { PWM system } & \text { Sine-wave PWM system } \\ \hline \text { Output frequency range }{ }^{\text {Notel }} & \text { 0.00~590.00Hz } \\ \hline \text { Frequency accuracy } & \text { For the highest frequency, digital } \pm 0.01 \% \text {, analog } \pm 0.2 \% \text { (25 } \pm 10{ }^{\circ} \mathrm{C} \text { ) }\end{array}\right]$

Note: 1. Output frequency range will depend on the motor control method and the motor used. Consult the motor manufacturer for the maximum allowable frequency of the motor when operating beyond 60 Hz .
2. In case of the control mode is changed and the motor constant is not set appropriately, the desired starting torque cannot be obtained and also exists the possibility of tripping.
3. Regarding the speed range regulation of motor, the variable range depends on the client system and the environment in which the motor is used.
4. If the IGBT error [E030] occurs by the protective function, it may have happened by the short-circuit protection, but also can occur if the IGBT is damaged. Depending on the operation status of the inverter, instead of the IGBT error, the overcurrent error [E001] may also occur.
5. At factory setting, the maximum output frequency for analogue input signal VRF/IRF is adjusted to 9.8 V for voltage input and 19.6 mA for current input. In order to adjust the specification use analogue start/end function.

Common specifications(2)


Note: 6. The analogue voltage and analogue current monitor are estimated outputs of the analogue meter connection. Maximum output value might deviate slightly from 10 V or 20 mA by variation of the analogue output circuit. If you want to change the characteristics, adjust the Ao1 and Ao2 adjustment functions.
There are some monitor data that cannot be output.
7. In order to enable the EMC filter, connect to the neutral grounding supply. Otherwise, the leakage current may increase.
8. Storage temperature is the temperature during transport.
9. In accordance with the test methods of JIS C 60068-2-6:2010(IEC 60068-2-6:2007).
10. In case of utilization at an altitude of 1000 m or more, take into account that the atmospheric pressure is reduced by $1 \%$ for every 100 m up. Apply $1 \%$ derating from the rated current by increasing every 100 m , and conduct an evaluation test.
When using above 2500 m ambient, please contact Hitachi Inverter distributer.
11. Insulation distance is in accordance with the UL and CE standards.
12. Modbus is a registered trademark of Schneider Automation Inc.

PROFIBUS ${ }^{\circ}$ and PROFINET ${ }^{\circ}$ is registered trademark of PROFIBUS Nutzerorganisation e.V. (PNO).

| Error Code | Name | Explanation |
| :---: | :---: | :---: |
| E001 | Overcurrent error | A large current flowing in the inverter results in a failure. To prevent this, the inverter turns OFF its output. |
| E005 | Motor overload error | The built-in electronic thermal function monitors the output current of the inverter and when a motor overload is detected, the inverter turns OFF its output. |
| E006 | Braking resistor overload error | When the use rate of inverter's braking resistor operation circuit (BRD) exceeds the use rate set beforehand in [bA-60], the inverter turns OFF its output. |
| E007 | Overvoltage error | Too high P-N voltage results in a failure. To prevent this, the inverter turns OFF its output. When P-N voltage exceeds approx. 410 Vdc ( 200 V class) or approx. 820 Vdc ( 400 V class), the output is turned OFF. |
| E008 | Memory error | If the built-in memory has problems, the inverter turns OFF its output. <br> CPU error may be issued instead. The inverter recovers by re-turning ON the power; however, you need to check that there is no problem in parameters. |
| E009 | Under voltage error | A decrease of the main power supply of inverter results in a circuit breakage. <br> To prevent this, the inverter turns OFF its output. When P-N voltage falls below approx. 160Vdc (200V class) or approx. 320VDC (400V class), the output is turned OFF. |
| E010 | Current detector error | If the built-in current detector has problems, the inverter turns OFF its output. |
| E011 | CPU error | When a malfunction or problem occurs in the built-in CPU, the inverter turns OFF its output and then displays the error. |
| E012 | External trip error | When the inverter accepted a signal commanded by an external device or equipment, the inverter turns OFF its output. (When external trip function is selected.) |
| E013 | USP error | This error occurs if an operation command has been input to the inverter when the power supply is turned ON. Operation command detection is carried out for 1 second after the power supply is turned ON. (When USP function is selected.) |
| E014 | Ground fault error | This is a function to protect the inverter by the detection of ground faults between the inverter output and the motor at power-on. The function doesn't work when there is a voltage induced in the motor due to idling or when the inverter trips. |
| E015 | Incoming overvoltage error | This error occurs if high incoming voltage level is held for 100 seconds continuously while the inverter output is stopped when incoming overvoltage level [bb-61] is set to 01 . It occurs when the P-N voltage exceeds the voltage level set in the incoming overvoltage level selection [bb-62] due to incoming voltage. |
| E016 | Instantaneous power failure error | At the time of an instantaneous power failure, the inverter turns OFF its output. (15ms and over) If the power failure continues, the event is regarded as a normal power-off. |
| E019 | Temperature detector error | This error occurs if there is a problem in the temperature detector circuit such as disconnection. |
| E020 | Cooling fan rotation speed reduction error | If the temperature of inverter gets high due to deterioration of cooling ability resulted from decrease in fan rotation speed, the inverter turns OFF its output. |
| E021 | Temperature error | When the temperature of inverter gets high, the inverter turns OFF its output. |
| E024 | Input open-phase error | When [bb-65] input phase loss selection is set to 01, when a missing phase is detected in input line, the inverter turns OFF its output. |
| E030 | IGBT error | At the time of an instantaneous overcurrent or the main element failure, the inverter turns OFF its output to protect the main element. Overcurrent error may be issued instead. |
| E034 | Output open-phase error | When the output phase loss selection [bb-66] is set to 01, when a loose connection or disconnection of output line, disconnection inside the motor, etc. is detected, the inverter turns OFF its output. Detection of phase loss state is executed in the section between 5 Hz to 100 Hz . |
| E035 | Thermistor error | If an abnormal temperature is observed during detection of resistor level change in an external thermistor, the inverter turns OFF its output. (When thermistor function is enabled.) |
| E036 | Brake error | This is error occurs when the inverter cannot detect whether the brake check signal is ON or OFF during waiting time after the inverter has output a brake releasing signal. <br> (When brake function is enabled.) |
| E038 | Low-speed range overload error | This error occurs to protect the main element if the inverter has output at a low frequency of 0.2 Hz or below. When such a low frequency is detected by the built-in electronic thermal function, the inverter turns OFF its output. |
| E039 | Inverter overload error | The built-in electronic thermal function monitors the output current of the inverter and when inverter overload is detected, the inverter turns OFF its output. |
| E040 | Operator keypad communication error | The inverter displays this error when timeout occurs because of a malfunction due to noises, loose connection or disconnection of circuit for communication with the operator keypad. |
| E041 | RS485 communication error | The inverter displays this error only when timeout occurs because of a malfunction due to noises, loose connection or disconnection of circuit for RS485 communication (such as Modbus-RTU). |
| E042 | RTC error | The error is generated if the data of RTC incorporated in the operator keypad is returned to the initial data. |

## Outline Drawing




## Main Circuit Terminals

Terminal Description

| Symbol | Terminal Name | Description |
| :---: | :---: | :---: |
| $\begin{aligned} & \hline \mathrm{R}, \mathrm{~S}, \mathrm{~T} \\ & (\mathrm{~L} 1, \mathrm{~L} 2, \mathrm{~L} 3) \end{aligned}$ | Main power input terminals | Connect to the AC power supply. |
| U,V,W <br> (T1,T2,T3) | Inverter output terminals | Connect a Three-phase motor. ${ }^{\text {Note }}$ |
| $\begin{aligned} & \mathrm{P} 1, \mathrm{P} \\ & (+) \end{aligned}$ | DC reactor connection terminals | Remove the P1-P jumper from terminals, and connect the optional DC choke for power factor improvement. |
| $\begin{aligned} & \hline \text { P,PR } \\ & (+) \end{aligned}$ | External braking resistor connection terminals | Connect the optional external braking resistor. (HF4322-5A5 to 022 and HF4324-5A5 to 037) |
| $\begin{aligned} & \hline \mathrm{P}, \mathrm{~N} \\ & (+,-) \end{aligned}$ | External braking unit connection terminals | Connect the optional external braking unit. (HF4322-030 to 055 and HF4324-045, 055) |
| $\mathrm{E}(\mathrm{G}) \doteq$ | Ground connection terminals | Connect the optional regenerative braking unit. |
| r1, t1 | Control power supply input terminals | This serves as a ground terminal for the inverter chassis to ground. Connect 200 V class and 400 V class models to Type-D grounding and Type-C grounding, respectively. |

Note: When operating with sensorless vector control, be sure to connect the motor.

Screw Diameter and Terminal width

| Model | $\mathrm{r} 1, \mathrm{t} 1$ Terminal | Ground Terminal | Other Terminal | Terminal width <br> $(\mathrm{mm})$ | Terminal <br> Arrangement |
| :--- | :---: | :---: | :---: | :---: | :---: |
| HF4322-5A5, 7A5 / HF4324-5A5, 7A5(5.5, 7.5kW) | M4 | M5 | M5 | 13 |  |
| HF4322-011(11kW)/ HF4324-011(11kW) | M4 | M6 | M6 | 16.5 | Fig.1 |
| HF4322-015(15kW) | M4 | M6 | M6 | 23 |  |
| HF4322-022(22kW) | M4 | M6 | M8 | 23 | Fig.2 |
| HF4322-030(30kW) | M4 | M6 | M8 | 22 |  |
| HF4322-037(37kW)/ HF4322-045(45kW) | M4 | M8 | M8 | 29 |  |
| HF4322-055(55kW) | M4 | M8 | M10 | 40 | Fig.3 |
| HF4324-015(15kW)/ HF4324-022(22kW) | M4 | M6 | M6 | 16.5 | Fig.4 |
| HF4324-030(30kW) | M4 | M6 | M6 | 22 | Fig.5 |
| HF4324-037~HF4324-045(37~55kW) | M4 | M8 | M8 | 29 |  |

Terminal Arrangement


Fig. 3 200V class:HF4322-030~HF4322-055(30~55kW)


## Control Circuit Terminals

- Terminal Arrangement


Configuration of Switches

| Indication | Name of Switch |  |
| :---: | :--- | :--- |
| SW1 | Analog input 1 selector | It changes the input specification of Analog input 1 (VRF terminal). <br> 10V: Voltage input is available. 20mA: Current input is available. |
| SW2 | Analog input 2 selector | It changes the input specification of Analog input 2 (IRF terminal). <br> 10V: Voltage input is available. 20mA: Current input is available. |
| SW3 | Analog output 1 selector | It changes the output specification of Analog output 1 (AMV terminal). <br> 10V: Voltage output is applied. 20mA: Current output is applied. |
| SW4 | Analog output 2 selector | It changes the output specification of Analog output 2 (AMI terminal). <br> 10V: Voltage output is applied. 20mA: Current output is applied. |
| SW5 | Change of the power supply <br> Method to input terminals | It changes the power source for input terminals. <br> IN: Internal power source. EX: External power source. <br> (While setting EX, it requires an external power supply between input terminals and COM terminal) |
| SW6 | Input terminal <br> Sink/Source logic switching | It changes the sink or source logic for input terminal. This Is enabled when SW5 is in IN position. <br> SINK: Switch to Sink logic. SRC: Switch to Source logic. |

## Terminal Description

|  |  | Symbol | Terminal Name | Description | Electric characteristics |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Analog Input/ output terminal | Power Supply | COM | COM for analog power supply | COM terminals for analog input terminals (VRF, IRF, VF2) and analog output terminals (AMV, AMI). Two COM terminals are available. | - |
|  |  | +V | Speed setting power supply | DC10V power supply. Used for voltage input with analog input terminals (VRF, IRF, VF2) using a variable resister. | Max. allowable input current 20 mA |
|  | Analog Input | VRF | Analog input terminal 1 (voltage/current selector SW1) | Either VRF or IRF can be used by switching the selector switch to DC0 to 10 V voltage input or 0 - to 20 mA current input. <br> Used as speed input and feedback input. | For voltage input: <br> - Input impedance Approx. $10 \mathrm{k} \Omega$ <br> - Allowable input voltage $\mathrm{DC}-0.3 \mathrm{~V}$ to 12 V <br> For current input: <br> - Input impedance Approx. $100 \Omega$ <br> - Max. allowable input current 24 mA |
|  |  | IRF | Analog input terminal 2 (voltage/current selector SW2) |  |  |
|  |  | VF2 | Analog input terminal 3 | DC-10 to 10 V voltage input is available. Used as speed input and feedback input. | Voltage input only: <br> - Input impedance Approx. $10 \mathrm{k} \Omega$ <br> - Allowable voltage input DC-12V to 12 V |
|  | Analog Output | AMV | Analog output terminal 1 (voltage/current selector SW3) | Either AMV or AMI can be used as an output for inverter monitoring data by switching the selector switch to DC0 to 10 V voltage output or 0 to 20 mA current output. | For voltage output: <br> - Max. allowable output current 2 mA <br> - Output voltage accuracy $\pm 10 \%$ <br> (Ambient temperature: $25 \pm 10$ degrees C ) <br> For current input: <br> - Allowable load impedance $250 \Omega$ or less <br> - Output current accuracy $\pm 20 \%$ <br> (Ambient temperature: $25 \pm 10$ degrees C ) |
|  |  | AMI | Analog output terminal 2 (voltage/current selector SW4) |  |  |

\begin{tabular}{|c|c|c|c|c|}
\hline \& Symbol \& Terminal Name \& Description \& Electric characteristics \\
\hline \multirow{3}{*}{Power Supply} \& PCS \& 24 V output power source terminal \& This terminal supplies DC24V power for contact signals. \& Max. output 100 mA \\
\hline \& P+ \& Terminal for external 24 V input (24V) \& \multirow[t]{2}{*}{Input external DC24V power supply to the inverter. 24 V power supply input permit to change parameter settings and perform optional communication operations without control power supply.} \& \multirow[t]{2}{*}{\begin{tabular}{l}
Allowable input voltage DC24V \(\pm 10 \%\) \\
Max. allowable current 1A
\end{tabular}} \\
\hline \& P- \& Terminal for external 24 V input ( 0 V ) \& \& \\
\hline Contact point \& \begin{tabular}{l}
FR,RR \\
DFL,DFM \\
AUT,MBS \\
JOG,ES \\
RST
\end{tabular} \& Input terminal \& \begin{tabular}{l}
Terminal functions are selectable according to the parameter settings for each terminal. \\
Switching SW6 to SRC or SINK allows you to select SINK or Source logic.
\end{tabular} \& \begin{tabular}{l}
Voltage between each input and COM terminals \\
- ON voltage Min.DC18V \\
- OFF voltage Max.DC3V \\
- Max. allowable voltage DC27V \\
- Load current 5.6 mA (at DC27V)
\end{tabular} \\
\hline Contact point or Pulse input \& DFH \& Pulse input-A
Pulse input-B \& \begin{tabular}{l}
This is a terminal for pulse input. \\
\(A\) and \(B\) terminals can be used also as an input terminal. \\
Terminal functions are selectable according to the parameter settings for each terminal. \\
The maximum input pulse rate is 32 kpps .
\end{tabular} \& \begin{tabular}{l}
Voltage between an input and COM terminals \\
- ON voltage Min.DC18V \\
- OFF voltage Max.DC3V \\
- Max. allowable voltage DC27V \\
- Load current 5.6 mA (at DC27V) \\
- Max input pulse rate 32 kpps
\end{tabular} \\
\hline Common \& BC \& Input (common) \& This is a common terminal for digital input terminals Three COM terminals are available. \& \\
\hline \multirow[t]{2}{*}{Open collector} \& \[
\begin{aligned}
\& \text { UPF,DRV } \\
\& \text { X1,X2, X3 }
\end{aligned}
\] \& Output terminal \& \begin{tabular}{l}
Terminal functions are selectable according to the parameter settings for each terminal. \\
This is available for both SINK and Source logics.
\end{tabular} \& \begin{tabular}{l}
Open collector output \\
Between each terminal and CM2 \\
- Voltage drop when turned on: 4 \\
V or less \\
- Max. allowable voltage 27V \\
- Max. allowable current 50 mA
\end{tabular} \\
\hline \& OM \& Output (common) \& This is a common terminal for output terminals. \& - \\
\hline \& \[
\begin{aligned}
\& \mathrm{RY} \\
\& \mathrm{RC}
\end{aligned}
\] \& 1a relay terminal \& Relays for A contact output \& \begin{tabular}{l}
Maximum contact capacity \\
- AC250V, 2A(resistance) \\
- AC250V, 1A(inductive load) (Minimum contact capacity) \\
- DC1V, 1mA
\end{tabular} \\
\hline Relay \& \[
\begin{aligned}
\& \text { FA } \\
\& \text { FB } \\
\& \text { FC }
\end{aligned}
\] \& 1c relay terminal \& Relays for C contact output \& \begin{tabular}{l}
Maximum contact capacity FB/FC: \\
- AC250V, 2A (resistance) \\
- AC250V, 0.2A (inductive load) FA/FC: \\
- AC250V, 1A (resistance) \\
- AC250V, 0.2A(inductive load) Minimum contact capacity (common) \\
- AC100V, 10 mA \\
- DC5V, 100 mA
\end{tabular} \\
\hline \multirow[t]{2}{*}{Monitor Output} \& FRQ \& Digital monitor (voltage) \& Digital monitor output is selectable from PWM output with 6.4 ms cycle or pulse output with a variable duty cycle of approx. \(50 \%\). \& \begin{tabular}{l}
Pulse train output DC0 to 10 V Max. allowable output current 1.2 mA \\
Maximum frequency 3.60 kHz
\end{tabular} \\
\hline \& P- \& COM for digital monitor \& This is a common terminal for digital monitor. This is also used as OV reference potential for P24. \& - \\
\hline Thermistor \& TH+

TH- \& \begin{tabular}{l}
External thermistor input <br>
Common terminal for external thermistor input

 \& 

Connect to an external thermistor to make the inverter trip if an abnormal temperature is detected. <br>
Connect the thermistor to $\mathrm{TH}+$ and $\mathrm{TH}-$. <br>
The impedance to detect temperature errors can be adjusted within the range $0 \Omega$ to $10,000 \Omega$. <br>
[Recommended thermistor properties] <br>
Allowable rated power: 100 mW or more <br>
Impedance at temperature error: $3 \mathrm{k} \Omega$
\end{tabular} \&  <br>

\hline Serial communication \& \[
$$
\begin{aligned}
& \text { SP } \\
& \text { SN } \\
& \text { RP } \\
& (P-)
\end{aligned}
$$

\] \& MODBUS terminal (RS-485) \& | SP terminal: RS-485 differential(+) signal |
| :--- |
| SN terminal: RS-485 differential(-) signal |
| RP terminal: Connect to SP through a termination resistor |
| CM1 terminal: Connect to the signal ground of external communication devices. |
| There are two SP and two SN terminals, which are connected internally. |
| The maximum baud rate is 115.2 kbps . | \& | Termination resistor (120 $\Omega$ ) |
| :--- |
| integrated |
| Enabled: RP-SN shorted |
| Disabled: RP-SN opened | <br>

\hline
\end{tabular}



Note:1. Common to each terminal varies.
2. DisconnectedJ51 when to supply r1, t1 separately. UV error is issued when main supply is off while in operation.

Monitors related to output

| Code | Name | Data range |
| :---: | :---: | :---: |
| dA-01 | Output frequency monitor | 0.00~590.00 (Hz) |
| dA-02 | Output current monitor | $0.0 \sim 655.35$ (A) |
| dA-03 | Operation direction monitor | F (Normal rotation in process)/r (Reverse rotation in process) /d (0Hz output)/o (Stopped) |
| dA-04 | Frequency command | $-590.00 \sim 590.00$ (Hz) |
| dA-06 | Output frequency conversion monitor | $0.00 \sim 59000.00$ (Hz) |
| dA-08 | Speed detection value monitor |  |
| dA-12 | Output frequency monitor (with sign) | -590.00~590.00 (Hz) |
| dA-14 | Frequency upper limit monitor | 0.00~590.00 (Hz) |
| dA-15 | Torque command monitor (after calculation) | -1000.0~1000.0 (\%) |
| dA-16 | Torque limit monitor | 0.0~500.0 (\%) |
| dA-17 | Output torque monitor | -1000.0~1000.0 (\%) |
| dA-18 | Output voltage monitor | 0.0~800.0 (V) |
| dA-20 | Current position monitor | When [AA121] $\neq 10$ or $[$ AA123] $\neq 03-268435455 \sim+268435455$ (pls) <br> When [AA121] $=10$ and [AA123] $=03-1073741823 \sim+1073741823$ (pls) |
| dA-26 | Pulse string position deviation monitor | -2147483647~+2147483647 (pls) |
| dA-28 | Pulse counter monitor | 0~2147483647 (pls) |
| dA-30 | Input power monitor | 0.00~75.00 (kW) |
| dA-32 | Integrated input power monitor | 0.0~1000000.0 (kW) |
| dA-34 | Output power monitor | $0.00 \sim 75.00$ (kW) |
| dA-36 | Integrated output power monitor | 0.0~1000000.0 (kW) |
| dA-38 | Motor temperature monitor | -20.0~200.0 ( ${ }^{\circ} \mathrm{C}$ ) |
| dA-40 | DC voltage monitor | 0.0~1000.0 (V) |
| dA-41 | Braking resistor circuit (DBTR) duty ratio monitor |  |
| dA-42 | Electronic thermal duty ratio monitor (motor) | 0.00~100.00 (\%) |
| dA-43 | Electronic thermal duty ratio monitor (inverter) |  |

## Monitors related to control circuit

| Code | Name | Data range |
| :---: | :---: | :---: |
| dA-45 | STO monitor | 00 (no input)/ 01 (P-1A)/ 02 (P-2A)/ 03 (P-1b)/04 (P-2b)/05 (P-1C)/06 (P-2C)/ 07 (STO) |
| dA-50 | Terminal block option mounted | 00 (P1-TM: standard terminal block) <br> 02 (P1-TM2: terminal block with round screws)/15 (not connected) |
| dA-51 | Input terminal monitor | LLLLLLLLLLL~HHHHHHHHHHH [L:OFF/H:ON] <br> [Left side] (terminal DHH) (terminal DFH) (terminal RST) - (terminal FR) [Right side] |
| dA-54 | Output terminal monitor | LLLLLLL-HHHHHHH [L:OFF/H:ON] <br> [Left side] (terminal FL) (terminal RL) (terminal X3) - (terminal UPF) [Right side] |
| dA-60 | Analog I/O selection monitor | AAAAAAAA-VVVVVVVVV [A: current/V: voltage] [Left side] (terminal Ao4 (lo4/Vo4)) (terminal Ao3 (Io3/Vo3)) (terminal Ai4 (li4/Vi4)) (terminal VF2 (li3/Vi3)) (terminal AMI) (terminal AMV) (terminal IRF) (terminal VRF) [Right side] |
| dA-61 | Analog input [VRF] monitor | 0.00~100.00 (\%) |
| dA-62 | Analog input [IRF] monitor | 0.00~100.00 (\%) |
| dA-63 | Analog input [VF2] monitor | -100.00~100.00 (\%) |
| dA-64 | Extended analog input [Ai4] monitor | 0.00~100.00 ${ }^{(\%)}$ |
| dA-65 | Extended analog input [Ai5] monitor | 0.00~100.00 (\%) |
| dA-66 | Extended analog input [Ai6] monitor |  |
| dA-70 | Pulse string input monitor (main body) | -100.00~100.00 (\%) |
| dA-71 | Pulse string input monitor (HF-FB) |  |

Option slot monitor

| Code | Name |  |
| :---: | :--- | :--- |
| $\mathrm{dA}-81$ | Option slot 1 mounted | Data range |
| $\mathrm{dA}-82$ | Option slot 2 mounted | 00: (none)/01: (P1-EN)/03: (P1-PN)/06: (P1-PB)/07: (P1-CCL)/18: (P1-AG) |
| $\mathrm{dA}-83$ | <pereafter only da-82 is indicated>33: (HF-FB) |  |

Monitors related to PID function

| Code | Name | Data range |
| :---: | :---: | :---: |
| db-30 | PID1 feedback data 1 monitor |  |
| db-32 | PID1 feedback data 2 monitor | 0.00~100.00 (\%) (adjustable in [AH-04][AH-05][AH-06]) |
| db-34 | PID1 feedback data 3 monitor |  |
| db-36 | PID2 feedback data monitor | 0.00~100.00 (\%) (adjustable in [AJ-04][AJ-05][AJ-06]) |
| db-38 | PID3 feedback data monitor | 0.00~100.00 (\%) (adjustable in [AJ-24][AJ-25][AJ-26]) |
| db-40 | PID4 feedback data monitor | 0.00~100.00 (\%) (adjustable in [AJ-44][AJ-45][AJ-46]) |
| db-42 | PID1 target value monitor |  |
| db-44 | PID1 feedback data monitor | 0.00~100.00 (\%) (adjustable in [AH-04][AH-05][AH-06]) |
| db-50 | PID1 output monitor |  |
| db-51 | PID1 deviation monitor |  |
| db-52 | PID1 deviation 1 monitor |  |
| db-53 | PID1 deviation 2 monitor |  |
| db-54 | PID1 deviation 3 monitor |  |
| db-55 | PID2 output monitor | -100.00~100.00 (\%) |
| db-56 | PID2 deviation monitor |  |
| db-57 | PID3 output monitor |  |
| db-58 | PID3 deviation monitor |  |
| db-59 | PID4 output monitor |  |
| db-60 | PID4 deviation monitor |  |
| db-61 | PID current P gain monitor | 0~100.00 (\%) |
| db-62 | PID current I gain monitor | 0.0~3600.0 (s) |
| db-63 | PID current D gain monitor | 0.00~100.00 (s) |
| db-64 | PID feed-forward monitor | 0.00~100.00 (\%) |

Monitors for checking internal condition

| Code | Name | $\quad$ Data range |
| :--- | :--- | :--- |
| dC-01 | Monitor for checking selection of inverter duty spec | 00 (very low duty) <br> 01 <br> 01 <br> 02 (low duty) |
| dC-02 | Ratermal duty) |  |

Monitors and parameters for changing the current commands

| Code | Name | Data range |
| :---: | :---: | :---: |
| FA-01 | Main speed command monitor | 0.00~590.00 (Hz) |
| FA-02 | Auxiliary speed command monitor | -590.00-590.00 (Hz) (for monitoring)/0.00-590.00 (Hz) (for setting) |
| FA-10 | Acceleration time monitor | 0 |
| FA-12 | Deceleration time monitor | 0.00~3600.00 (s) |
| FA-15 | Torque command monitor |  |
| FA-16 | Torque bias command monitor | 500.0 500.0 (\%) |
| FA-20 | Position command monitor | When [AA121] $=10$ or [AA123] $=03$-268435455 ~+268435455 (pls) When [AA121]=10 and [AA123]=03-1073741823~+1073741823 (pls) |
| FA-30 | PID1 target value 1 |  |
| FA-32 | PID1 target value 2 | 0.00~100.00 (\%) (adjustable in [AH-04] [AH-05] [AH-06]) |
| FA-34 | PID1 target value 3 |  |
| FA-36 | PID2 target value | 0.00~100.00 (\%) (adjustable in [AJ-04] [AJ-05] [AJ-06]) |
| FA-38 | PID3 target value | 0.00~100.00 (\%) (adjustable in [AJ-24] [AJ-25] [AJ-26]) |
| FA-40 | PID4 target value | 0.00~100.00 (\%) (adjustable in [AJ-44] [AJ-45] [AJ-46]) |

Parameter mode (code A)

| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| AA101 | First main speed command selection | 01 (VRF terminal input)/02 (IRF terminal input)/03 (VF2 terminal input) 04 (Ai4 terminal input)/05 (Ai5 terminal input)/06 (Ai6 terminal input) 07 (Parameter setting)/08 (RS 485)/09 (Option 1)/10 (Option 2)/11 (Option 3) 12 (Pulse string input: main unit)/13 (Pulse string input: HF-FB)/14 (Reserved) 15 (PID calculation)/16 (Reserved) | 07 |
| AA102 | First auxiliary speed command selection | 00 (Disabled)/01 (VRF terminal input)/02 (IRF terminal input)/03 (VF2 terminal input) 04 (Ai4 terminal input)/05 (Ai5 terminal input)/06 (Ai6 terminal input) 07 (Parameter setting)/08 (RS 485)/09 (Option 1)/10 (Option 2)/11 (Option 3) 12 (Pulse string input: main unit)/13 (Pulse string input: HF-FB) 14 (Reserved)/15 (PID calculation)/16 (Reserved) | 00 |
| AA104 | First auxiliary speed setting | 0.00~590.00 (Hz) | 0.00 |
| AA105 | First operator selection | 00 (Disabled)/01 (Addition)/02 (Subtraction)/03 (Multiplication) | 00 |
| AA106 | First additional frequency setting | $-590.00 \sim 590.00$ (Hz) | 0.00 |
| AA111 | First operation command selection | 00 ([FR]/[RR] terminal)/01 (3 wire)/02 (RUN key on operator keypad) 03 (RS485)/04 (Option 1)/05 (Option 2)/06 (Option 3) | 02 |
| AA-12 | RUN key operation direction selection | 00 (Normal rotation)/01 (Reverse rotation) | 00 |
| AA-13 | STOP key selection | 00 (Disabled)/01 (Enabled)/02 (Only reset is enabled) | 01 |
| AA114 | First operation direction limit selection | 00 (No limitation)/01 (Only normal rotation)/02 (Only reverse rotation) | 00 |
| AA115 | First stop mode selection | 00 (Deceleration stop)/01 (Free run stop) | 00 |
| AA121 | First control mode | 00 ([V/f] Fixed torque characteristics (IM)) <br> 01 ([V/f] Reducing torque characteristics (IM)) <br> 02 ([V/f] Free V/f (IM))/03 ([V/f] Auto torque boost (IM)) <br> 04 ([V/f with sensor]) Fixed torque characteristics (IM) <br> 05 ([V/f with sensor] Reduced torque characteristics (IM) <br> 06 ([V/f with sensor] Free V/f (IM)/07 ([V/f with sensor] Auto torque boost (IM) <br> 08 (Sensorless vector control (IM))/09 (Zero-Hz range sensorless vector control (IM)) <br> 10 (Vector control with sensor (IM)) <br> 11 (Synchronous start type sensorless vector control (SM/PMM)) <br> 12 (IVMS start type sensorless vector control (SM/PMM)) | 00 |
| AA123 | First vector control mode selection | 00 (Speed/torque control mode)/01 (Pulse string position control mode) <br> 02 (Absolute position control mode) <br> 03 (High-resolution absolute position control mode) | 00 |
| AA201 | Second main speed command selection | Same as AA101 | 07 |
| AA202 | Second auxiliary speed command selection | Same as AA102 | 00 |
| AA204 | Second auxiliary speed setting | Same as AA104 | 0.00 |
| AA205 | Second operator selection | Same as AA105 | 00 |
| AA206 | Second additional frequency setting | Same as AA106 | 0.00 |
| AA211 | Second operation command selection | Same as AA111 | 02 |
| AA214 | Second operation direction limit selection | Same as AA114 | 00 |
| AA215 | Second stop mode selection | Same as AA115 | 00 |
| AA221 | Second control mode | Same as AA121 | 00 |
| AA223 | Second vector control mode selection | Same as AA123 | 00 |


| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| Ab-01 | Frequency conversion coefficient | 0.01~100.00 | 1.00 |
| Ab-03 | Multistep speed selection | 00 (16th speed: binary (DFL~DHH))/01 (8th speed: bit (SF1-SF7)) | 00 |
| Ab110 | Oth speed of the 1st multi-step speed | 0.00~590.00 (Hz) | 10.00 |
| Ab-11 | 1st speed of the multi-step speed |  | 20.00 |
| Ab-12 | 2nd speed of the multi-step speed |  | 30.00 |
| Ab-13 | 3rd speed of the multi-step speed |  | 40.00 |
| Ab-14 | 4th speed of the multi-step speed |  | 0.00 |
| Ab-15 | 5 th speed of the multi-step speed |  | 0.00 |
| Ab-16 | 6th speed of the multi-step speed |  | 0.00 |
| Ab-17 | 7th speed of the multi-step speed |  | 0.00 |
| Ab-18 | 8th speed of the multi-step speed |  | 0.00 |
| Ab-19 | 9th speed of the multi-step speed |  | 0.00 |
| Ab-20 | 10th speed of the multi-step speed |  | 0.00 |
| Ab-21 | 11th speed of the multi-step speed |  | 0.00 |
| Ab-22 | 12th speed of the multi-step speed |  | 0.00 |
| Ab-23 | 13th speed of the multi-step speed |  | 0.00 |
| Ab-24 | 14th speed of the multi-step speed |  | 0.00 |
| Ab-25 | 15th speed of the multi-step speed |  | 0.00 |
| Ab210 | 0th speed of the 2nd multi-step speed | Same as Ab110 | 10.00 |
| AC-01 | Acceleration or deceleration time input type selection | 00 (Parameter setting)/01 (Option 1)/02 (Option 2) 03 (Option 3)/04 (Reserved) | 00 |
| AC-02 | Multi-stage acceleration or deceleration selection | 00 (Common) 01 (Multi-stage acceleration/deceleration) | 00 |
| AC-03 | Acceleration pattern selection | 00 (Linear)/01 (S-shaped)/02 (U-shaped) 03 (Reverse U-shaped)/04 (Elevator S-shaped) | 00 |
| AC-04 | Deceleration pattern selection |  |  |
| AC-05 | Acceleration curve constant (S-shaped, U-shaped, reverse U-shaped) | 1~10 | 2 |
| AC-06 | Deceleration curve constant (S-shaped, U-shaped, reverse U-shaped) |  |  |
| AC-08 | Curvature 1 for EL-S-shaped acceleration | 0~100 | 25 |
| AC-09 | Curvature 2 for EL-S-shaped acceleration |  |  |
| AC-10 | Curvature 1 for EL-S-shaped deceleration |  |  |
| AC-11 | Curvature 2 for EL-S-shaped deceleration |  |  |
| AC115 | First 2-stage acceleration or deceleration selection | 00 ([AD2] terminal)/01 (Parameter setting)/02 (Normal/reverse rotation) | 00 |


| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| AC116 | First 2-stage acceleration frequency |  | 0.00 |
| AC117 | First 2-stage deceleration frequency |  | 0.00 |
| AC120 | First acceleration time 1 | 0.00~3600.00 (s) | 30.00 |
| AC122 | First deceleration time 1 |  |  |
| AC124 | First acceleration time 2 |  |  |
| AC126 | First deceleration time 2 |  |  |
| AC-30 | Acceleration time for multi-speed 1st speed |  | 0.00 |
| AC-32 | Deceleration time for multi-speed 1st speed |  |  |
| AC-34 | Acceleration time for multi-speed 2nd speed |  |  |
| AC-36 | Deceleration time for multi-speed 2nd speed |  |  |
| AC-38 | Acceleration time for multi-speed 3rd speed |  |  |
| AC-40 | Deceleration time for multi-speed 3rd speed |  |  |
| AC-42 | Acceleration time for multi-speed 4th speed |  |  |
| AC-44 | Deceleration time for multi-speed 4th speed |  |  |
| AC-46 | Acceleration time for multi-speed 5th speed |  |  |
| AC-48 | Deceleration time for multi-speed 5th speed |  |  |
| AC-50 | Acceleration time for multi-speed 6th speed |  |  |
| AC-52 | Deceleration time for multi-speed 6th speed |  |  |
| AC-54 | Acceleration time for multi-speed 7th speed |  |  |
| AC-56 | Deceleration time for multi-speed 7th speed |  |  |
| AC-58 | Acceleration time for multi-speed 8th speed |  |  |
| AC-60 | Deceleration time for multi-speed 8th speed |  |  |
| AC-62 | Acceleration time for multi-speed 9th speed |  |  |
| AC-64 | Deceleration time for multi-speed 9th speed |  |  |
| AC-66 | Acceleration time for multi-speed 10th speed |  |  |
| AC-68 | Deceleration time for multi-speed 10th speed |  |  |
| AC-70 | Acceleration time for multi-speed 11th speed |  |  |
| AC-72 | Deceleration time for multi-speed 11th speed |  |  |
| AC-74 | Acceleration time for multi-speed 12th speed |  |  |
| AC-76 | Deceleration time for multi-speed 12th speed |  |  |
| AC-78 | Acceleration time for multi-speed 13th speed |  |  |
| AC-80 | Deceleration time for multi-speed 13th speed |  |  |
| AC-82 | Acceleration time for multi-speed 14th speed |  |  |
| AC-84 | Deceleration time for multi-speed 14th speed |  |  |
| AC-86 | Acceleration time for multi-speed 15th speed |  |  |
| AC-88 | Deceleration time for multi-speed 15th speed |  |  |
| AC215 | Second 2-stage acceleration or deceleration selection | Same as AC115 | 00 |
| AC216 | Second 2-stage acceleration frequency | Same as AC116 | 0.00 |
| AC217 | Second 2-stage deceleration frequency | Same as AC117 |  |
| AC220 | Second acceleration time 1 | Same as AC120 | 30.00 |
| AC222 | Second deceleration time 1 | Same as AC122 |  |
| AC224 | Second acceleration time 2 | Same as AC124 |  |
| AC226 | Second deceleration time 2 | Same as AC126 |  |


| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| Ad-01 | Torque command input selection | 00 (Disabled)/01 (VRF terminal input)/02 (IRF terminal input) 03 (VF2 terminal input)/04 (Ai4 terminal input)/05 (Ai5 terminal input) 06 (Ai6 terminal input)/07 (Parameter setting)/08 (RS 485) 09 (Option 1)/10 (Option 2)/11 (Option 3) <br> 12 (Pulse string input: main unit) <br> 13 (Pulse string input: HF-FB)/15 (PID calculation) | 01 |
| Ad-02 | Torque command setting | $\begin{aligned} & -500.0 \sim 500.0 \text { (\%) } \\ & \text { (Limited at a torque equivalent to } 200 \% \text { of inverter ND rating) } \end{aligned}$ | 0.0 |
| Ad-03 | Torque command polarity selection | 00 (As per the sign) 01 (Follow the revolution direction) | 00 |
| Ad-04 | Speed/torque control switch time | 0~1000 (ms) | 100 |
| Ad-11 | Torque bias input selection | 00 (Disabled)/01 (VRF terminal input)/02 (IRF terminal input) 03 (VF2 terminal input)/04 (Ai4 terminal input)/05 (Ai5 terminal input) 06 (Ai6 terminal input)/07 (Parameter setting)/08 (RS 485) <br> 09 (Option 1)/10 (Option 2)/11 (Option 3) <br> 12 (Pulse string input: main unit) <br> 13 (Pulse string input: HF-FB)/15 (PID calculation) | 00 |
| Ad-12 | Torque bias setting | -500.0~500.0 (\%) <br> (Limited at a torque equivalent to 200\% of inverter ND rating) | 0.0 |
| Ad-13 | Torque bias polarity selection | 00 (As per the sign)/01 (Follow the revolution direction) | 00 |
| Ad-14 | Torque bias enable terminal [TBS] selection | 00 (Disabled)/01 (Enabled) | 00 |
| Ad-40 | Torque control speed limit value input selection | 01 (VRF terminal input)/02 (IRF terminal input)/03 (VF2 terminal input) 04 (Ai4 terminal input)/05 (Ai5 terminal input)/06 (Ai6 terminal input) 07 (Parameter setting)/08 (RS 485) <br> 09 (Option 1)/10 (Option 2)/11 (Option 3) <br> 12 (Pulse string input: main unit)/13 (Pulse string input: HF-FB) | 07 |
| Ad-41 | Torque control frequency limit value (for normal rotation) | 590.00 | 0.00 |
| Ad-42 | Torque control frequency limit value (for reverse rotation) | 0.00~590.00 (Hz) | 0.00 |


| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| AE-01 | Electronic gear installation position selection | 00 (Feedback side)/01 (Command side) | 00 |
| AE-02 | Electronic gear ratio numerator |  |  |
| AE-03 | Electronic gear ratio denominator | 1~10000 | 1 |
| AE-04 | Positioning completion range setting | 0~1000 (ms) | 5 |
| AE-05 | Positioning completion delay time setting | 0.00~10.00 (s) | 0.00 |
| AE-06 | Position control feed forward | 0.00~655.35 | 0.00 |
| AE-07 | Position loop gain | 0.00~100.00 | 0.50 |
| AE-08 | Position bias amount | -2048~2048 | 0 |
| AE-10 | Orientation stop position input destination selection | 00 (Parameter setting)/01 (Option 1)/02 (Option 2)/03 (Option 3) | 00 |
| AE-11 | Orientation stop position | 0~4095 | 0 |
| AE-12 | Orientation speed setting | 0.00~120.00 | 5.00 |
| AE-13 | Orientation direction setting | 00 (Normal rotation)/01 (Reverse rotation) | 00 |
| AE-20 | Position command 0 | When [AA121] $\neq 10$ or $[$ AA123] $] 03-268435455 \sim+268435455$ (pls) When [AA121]=10 and [AA123]=03-1073741823~+1073741823 (pls) | 0 |
| AE-22 | Position command 1 |  |  |
| AE-24 | Position command 2 |  |  |
| AE-26 | Position command 3 |  |  |
| AE-28 | Position command 4 |  |  |
| AE-30 | Position command 5 |  |  |
| AE-32 | Position command 6 |  |  |
| AE-34 | Position command 7 |  |  |
| AE-36 | Position command 8 |  |  |
| AE-38 | Position command 9 |  |  |
| AE-40 | Position command 10 |  |  |
| AE-42 | Position command 11 |  |  |
| AE-44 | Position command 12 |  |  |
| AE-46 | Position command 13 |  |  |
| AE-48 | Position command 14 |  |  |
| AE-50 | Position command 15 |  |  |
| AE-52 | Position range designation (forward rotation side) | When [AA121] $=10$ or [AA123] $\neq 030 \sim+268435455$ (pls) When [AA121] $=10$ and [AA123] $=030 \sim+1073741823$ (pls) | 268435455 |
| AE-54 | Position range designation (reverse rotation side) | When [AA121] $=10$ or [AA123] $\neq 03-268435455 \sim 0(\mathrm{pls})$ When [AA121]=10 and [AA123]=03-1073741823~0 (pls) | -268435455 |
| AE-56 | Positioning mode selection | 00 (With limit)/01 (Without limit) | 00 |
| AE-60 | Teaching selection | 00 (X00)~15 (X15) | X00 |
| AE-61 | Memorization of current position at power-off | 00 (Disabled)/01 (Enabled) | 00 |
| AE-62 | Preset position data | When [AA121] $\neq 10$ or $[\mathrm{AA} 123] \neq 030 \sim+268435455$ (pls) When [AA121] $=10$ and $[\mathrm{AA} 123]=030 \sim+1073741823$ (pls) | 0 |
| AE-64 | Gain for calculating the deceleration stop distance | 50.00~200.00 | 100.00 |
| AE-65 | Bias for calculating the deceleration stop distance | 0.00~655.35 | 0.00 |
| AE-66 | APR control speed limit | 0.00~100.00 | 1.00 |
| AE-67 | APR start speed |  | 0.20 |
| AE-70 | Zero return mode selection | 00 (Low speed zero return)/01 (High speed zero return) 02 (High speed zero return 2) | 00 |
| AE-71 | Zero return direction selection | 00 (Normal rotation)/01 (Reverse rotation) | 00 |
| AE-72 | Low speed zero return speed | $0.00 \sim 10.00$ (Hz) | 0.00 |
| AE-73 | High speed zero return speed | $0.00 \sim 590.00$ (Hz) | 0.00 |
| AF101 | First DC braking selection | 00 (Disabled)/01 (Enabled)/02 (Frequency command) | 00 |
| AF102 | First braking mode selection | 00 (DC braking)/01 (Speed servo lock)/02 (Position servo lock) | 00 |
| AF103 | First DC braking frequency setting | 0.00~590.00 (Hz) | 0.50 |
| AF104 | First DC braking delay time | 0.00~5.00 (s) | 0.00 |
| AF105 | First DC braking force at the time of the stop | 0-100 (\%) (with internal limitation) | 0 |
| AF106 | First DC braking time at the time of the stop | $0.00 \sim 60.00$ (s) | 0.00 |
| AF107 | First DC braking trigger selection | 00 (Edge mode)/01 (Level mode) | 01 |
| AF108 | First DC braking force at the start | 0-100 (\%) (with internal limitation) | 0 |
| AF109 | First DC braking time at the start | 0.00~60.00 (s) | 0.00 |
| AF120 | First contactor control selection | 00 (Disabled)/01 (Enabled: primary side)/02 (Enabled: secondary side) | 00 |
| AF121 | First start waiting time | 0.00~2.00 (s) | 0.20 |
| AF122 | First contactor release delay time |  | 0.10 |
| AF123 | First contactor check time | 0.00~5.00 (s) | 0.10 |
| AF130 | First brake control selection | 00 (Disabled)/01 (Brake control 1 common inforward/reverse rotation) 02 (Brake control 1 forward/reverse set individually)/03 (Brake control 2) | 00 |
| AF131 | First brake release establishment waiting time (forward rotation) | 0.00~5.00 (s) | 0.00 |
| AF132 | First acceleration waiting time (forward rotation) |  |  |
| AF133 | First stop waiting time (forward rotation) |  |  |
| AF134 | First brake confirmation waiting time (forward rotation) |  |  |
| AF135 | First brake release frequency (forward rotation) | $0.00 \sim 590.00$ (Hz) | 0.00 |
| AF136 | First brake release current (forward rotation) | 0.00 to 2.00) $\times$ Inverter rated current (A) | $\begin{gathered} 1.0 \times \\ \text { rated current } \end{gathered}$ |
| AF137 | First brake apply frequency (forward rotation) | $0.00 \sim 590.00$ (Hz) | 0.00 |
| AF138 | First brake release establishment waiting time (reverse rotation) | 0.00~5.00 (s) | 0.00 |
| AF139 | First acceleration waiting time (reverse rotation) |  |  |
| AF140 | First stop waiting time (reverse rotation) |  |  |
| AF141 | First brake confirmation waiting time (reverse rotation) |  |  |
| AF142 | First brake release frequency (reverse rotation) | 0.00~590.00 (Hz) | 0.00 |
| AF143 | First brake release current (reverse rotation) | (0.00 to 2.00) $\times$ Inverter rated current (A) | $\begin{gathered} 1.0 \times \\ \text { rated current } \\ \hline \end{gathered}$ |
| AF144 | First brake apply frequency (reverse rotation) | 0.00~590.00 (Hz) | 0.00 |
| AF150 | First brake release delay time | 0.00~2.00 (s) | 0.20 |
| AF151 | First brake apply delay time |  |  |
| AF152 | First brake check time | 0.00~5.00 (s) | 0.10 |
| AF153 | First servo lock time at start | 0.00~10.00 (s) | 0.60 |
| AF154 | First servo lock time at stop |  |  |


| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| AF201 | Second DC braking selection | Same as AF101 | 00 |
| AF202 | Second braking mode selection | Same as AF102 | 00 |
| AF203 | Second DC braking frequency setting | Same as AF103 | 0.50 |
| AF204 | Second DC braking delay time | Same as AF104 | 0.00 |
| AF205 | Second DC braking force at the time of the stop | Same as AF105 | 0 |
| AF206 | Second DC braking time at the time of the stop | Same as AF106 | 0.00 |
| AF207 | Second DC braking trigger selection | Same as AF107 | 01 |
| AF208 | Second DC braking force at the start | Same as AF108 | 0 |
| AF209 | Second DC braking time at the start | Same as AF109 | 0.00 |
| AF220 | Second contactor control selection | Same as AF120 | 00 |
| AF221 | Second start waiting time | Same as AF121 | 0.20 |
| AF222 | Second contactor release delay time | Same as AF122 | 0.10 |
| AF223 | Second contactor check time | Same as AF123 | 0.10 |
| AF230 | Second brake control selection | Same as AF130 | 00 |
| AF231 | Second brake release establishment waiting time (forward rotation) | Same as AF131 | 0.00 |
| AF232 | Second acceleration waiting time (forward rotation) | Same as AF132 | 0.00 |
| AF233 | Second stop waiting time (forward rotation) | Same as AF133 | 0.00 |
| AF234 | Second brake confirmation waiting time (forward rotation) | Same as AF134 | 0.00 |
| AF235 | Second brake release frequency (forward rotation) | Same as AF135 | 0.00 |
| AF236 | Second brake release current (forward rotation) | Same as AF136 | $\begin{gathered} 1.0 \times \\ \text { rated current } \end{gathered}$ |
| AF237 | Second brake apply frequency (forward rotation) | Same as AF137 | 0.00 |
| AF238 | Second brake release establishment waiting time (forward rotation) | Same as AF138 | 0.00 |
| AF239 | Second acceleration waiting time (forward rotation) | Same as AF139 | 0.00 |
| AF240 | Second stop waiting time (forward rotation) | Same as AF140 | 0.00 |
| AF241 | Second brake confirmation waiting time (reverse rotation) | Same as AF141 | 0.00 |
| AF242 | Second brake release frequency (reverse rotation) | Same as AF142 | 0.00 |
| AF243 | Second brake release current (reverse rotation) | Same as AF143 | $\begin{gathered} 1.0 \times \\ \text { rated current } \\ \hline \end{gathered}$ |
| AF244 | Second brake apply frequency (reverse rotation) | Same as AF144 | 0.00 |
| AF250 | Second brake release delay time | Same as AF150 | 0.20 |
| AF251 | Second brake apply delay time | Same as AF151 | 0.20 |
| AF252 | Second brake check time | Same as AF152 | 0.10 |
| AF253 | Second servo lock time at start | Same as AF153 | 0.60 |
| AF254 | Second servo lock time at stop | Same as AF154 | 0.60 |
| AG101 | First jump frequency 1 | 0.00~590.00 (Hz) | 0.00 |
| AG102 | First jump frequency width 1 | $0.00 \sim 10.00$ (Hz) | 0.50 |
| AG103 | First jump frequency 2 | $0.00 \sim 590.00$ (Hz) | 0.00 |
| AG104 | First jump frequency width 2 | 0.00~10.00 (Hz) | 0.50 |
| AG105 | First jump frequency 3 | 0.00~590.00 (Hz) | 0.00 |
| AG106 | First jump frequency width 3 | 0.00~10.00 (Hz) | 0.50 |
| AG110 | First acceleration stop frequency | $0.00 \sim 590.00$ (Hz) | 0.00 |
| AG111 | First acceleration stop time | 0.0~60.0 (s) | 0.0 |
| AG112 | First deceleration stop frequency | 0.00~590.00 (Hz) | 0.00 |
| AG113 | First deceleration stop time | 0.0~60.0 (s) | 0.0 |
| AG-20 | Jogging frequency | 0.00~10.00 (Hz) | 5.00 |
| AG-21 | Selecting the jogging stop | 00 (Disabled during MBS operation at stop) <br> 01 (Disabled during deceleration stop operation) <br> 02 (Disabled during DB operation at stop) <br> 03 (Enabled during MBS operation at stop) <br> 04 (Enabled during deceleration stop operation) <br> 05 (Enabled during DB operation at stop) | 01 |
| AG201 | Second jump frequency 1 | Same as AG101 | 0.00 |
| AG202 | Second jump frequency width 1 | Same as AG102 | 0.00 |
| AG203 | Second jump frequency 2 | Same as AG103 | 0.00 |
| AG204 | Second jump frequency width 2 | Same as AG104 | 0.00 |
| AG205 | Second jump frequency 3 | Same as AG105 | 0.00 |
| AG206 | Second jump frequency width 3 | Same as AG106 | 0.00 |
| AG210 | Second acceleration stop frequency | Same as AG110 | 0.00 |
| AG211 | Second acceleration stop time | Same as AG111 | 0.0 |
| AG212 | Second deceleration stop frequency | Same as AG112 | 0.00 |
| AG213 | Second deceleration stop time | Same as AG113 | 0.0 |
| AH-01 | PID1 selection | 00 (Disabled) <br> 01 (Enabled Without reverse output) <br> 02 (Enabled With reverse output) | 00 |
| AH-02 | PID1 deviation negative | 00 (Disabled)/01 (Enabled) | 00 |
| AH-03 | PID1 unit selection | Unit options | 01 |
| AH-04 | PID1 scale adjustment (0\%) | -10000~10000 | 0 |
| AH-05 | PID1 scale adjustment (100\%) | -10000~10000 | 10000 |
| AH-06 | PID1 scale adjustment (decimal point) | 0~4 | 2 |
| AH-07 | PID1 target value 1 input destination selection | 00 (None)/01 (VRF terminal input)/02 (IRF terminal input) 03 (VF2 terminal input)/04 (Ai4 terminal input) <br> 05 (Ai5 terminal input)/06 (Ai6 terminal input) <br> 07 (Parameter setting)/08 (RS 485)/09 (Option 1) <br> 10 (Option 2)/11 (Option 3) <br> 12 (Pulse string input: main unit) <br> 13 (Pulse string input: HF-FB) | 07 |
| AH-10 | PID1 target value 1 set value | $\begin{aligned} & -100.00 \sim 100.00 \\ & \text { Data range differs depending on [AH-04] - [AH-06]. } \end{aligned}$ | 0.00 |


| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| AH-12 | PID1 multistage target value 1 | $\begin{aligned} & -100.00 \sim 100.00 \\ & \text { Data range differs depending on [AH-04] - [AH-06]. } \end{aligned}$ | 0.00 |
| AH-14 | PID1 multistage target value 2 |  |  |
| AH-16 | PID1 multistage target value 3 |  |  |
| AH-18 | PID1 multistage target value 4 |  |  |
| AH-20 | PID1 multistage target value 5 |  |  |
| AH-22 | PID1 multistage target value 6 |  |  |
| AH-24 | PID1 multistage target value 7 |  |  |
| AH-26 | PID1 multistage target value 8 |  |  |
| AH-28 | PID1 multistage target value 9 |  |  |
| AH-30 | PID1 multistage target value 10 |  |  |
| AH-32 | PID1 multistage target value 11 |  |  |
| AH-34 | PID1 multistage target value 12 |  |  |
| AH-36 | PID1 multistage target value 13 |  |  |
| AH-38 | PID1 multistage target value 14 |  |  |
| AH-40 | PID1 multistage target value 15 |  |  |
| AH-42 | PID1 target value 2 input destination selection | Same as AH-07 | 00 |
| AH-44 | PID1 target value 2 set value | -100.00~100.00 (\%) Data range differs depending on [AH-04]- [AH-06]. | 0.00 |
| AH-46 | PID1 target value 3 input destination selection | Same as AH-07 | 00 |
| AH-48 | PID1 target value 3 set value | -100.00~100.00 (\%) Data range differs depending on [AH-04]-[AH-06]. | 0.00 |
| AH-50 | PID1 target value 1 operator selection | 01 (Addition)/02 (Subtraction)/03 (Multiplication)/04 (Division) | 01 |
| AH-51 | PID1 feedback Data 1 Input destination selection | 00 (None)/01 (VRF terminal input)/02 (IRF terminal input) 03 (VF2 terminal input)/04 (Ai4 terminal input)/05 (Ai5 terminal input) 06 (Ai6 terminal input)/07 (Parameter setting)/08 (RS 485)/09 (Option 1) 10 (Option 2)/11 (Option 3)/12 (Pulse string input: main unit) 13 (Pulse string input: HF-FB) | 01 |
| AH-52 | PID1 feedback Data 2 Input destination selection |  | 00 |
| AH-53 | PID1 feedback Data 3 Input destination selection |  | 00 |
| AH-54 | PID1 feedback Data operator selection | 01 (Addition)/02 (Subtraction)/03 (Multiplication)/04 (Division) | 01 |
| AH-60 | PID1 gain switch method selection | 00 (Only gain 1)/01 ([PRO] terminal switch) | 00 |
| AH-61 | PID1 proportional gain 1 | 0.0~100.0 | 1.0 |
| AH-62 | PID1 integral gain 1 | 0.0~3600.0 (s) | 1.0 |
| AH-63 | PID1 differential gain 1 | 0.00~100.00 (s) | 0.00 |
| AH-64 | PID1 proportional gain 2 | 0.0~100.0 | 0.0 |
| AH-65 | PID1 integral gain 2 | 0.00~3600.0 (s) | 0.0 |
| AH-66 | PID1 differential gain 2 | 0.00~100.00 (s) | 0.00 |
| AH-67 | PID1 gain switch time | 0~10000 (ms) | 100 |
| AH-70 | PID feed-forward selection | 00 (Disabled)/01 (VRF terminal input)/02 (IRF terminal input) 03 (VF2 terminal input)/04 (Ai4 terminal input)/05 (Ai5 terminal input) 06 (Ai6 terminal input) | 00 |
| AH-71 | PID1 changeable range | 0.00~100.00 (\%) | 0.00 |
| AH-72 | PID1 deviation excessive level |  | 3.00 |
| AH-73 | PID1 feedback comparison signal OFF level |  | 100.00 |
| AH-74 | PID1 feedback comparison signal ON level |  | 0.00 |
| AH-75 | PID soft-start function selection | 00 (Disabled)/01 (Enabled) | 00 |
| AH-76 | PID soft-start target level | 0.00~100.00 (\%) | 100.00 |
| AH-78 | Acceleration time for PID soft-start | 0.00~3600.00 (s) | 30.00 |
| AH-80 | PID soft-start time | 0.00~100.00 (s) | 0.00 |
| AH-81 | PID start abnormal judgment implement selection | 00 (Disabled)/01 (Enabled: error output)/02 (Enabled: warning) | 00 |
| AH-82 | PID start abnormality judgment level | 0.00~100.00 (\%) | 0.00 |
| AH-85 | PID sleep condition selection | 00 (Disabled)/01 (Low output)/02 ([SLEP] terminal) | 00 |
| AH-86 | PID sleep start level | 0.00~590.00 (Hz) | 0.00 |
| AH-87 | PID sleep operation time | 0.00~100.00 (s) | 0.00 |
| AH-88 | Boost selection prior to PID sleep | 00 (Disabled)/01 (Enabled) | 00 |
| AH-89 | Boost time prior to PID sleep | 0.00~100.00 (s) | 0.00 |
| AH-90 | Boost amount prior to PID sleep | 0.00~100.00 (\%) | 0.00 |
| AH-91 | Minimum operation time prior to PID sleep | 0.00~100.00 (s) | 0.00 |
| AH-92 | PID sleep status minimum retaining time | 0.00~100.00 (s) | 0.00 |
| AH-93 | PID wake condition selection | 01 (Deviation amount)/02 (Low feedback)/03 ([WAKE] terminal) | 01 |
| AH-94 | PID wake start level | 0.00~100.00 (\%) | 0.00 |
| AH-95 | PID wake operation time | 0.00~100.00 (s) | 0.00 |
| AH-96 | PID wake start deviation amount | 0.00~100.00 (\%) | 0.00 |


| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| AJ-01 to 10 | PID2 selection | Same as AH-01 to AH-10 | - |
| AJ-12 | PID2 feedback data input destination selection | Same as AH-52 | 02 |
| AJ-13 | PID2 proportional gain | 0.0~100.0 | 1.0 |
| AJ-14 | PID2 integral gain | 0.0~3600.0 (s) | 1.0 |
| AJ-15 | PID2 differential gain | 0.00~100.00 (s) | 0.00 |
| AJ-16 | PID2 changeable range |  | 0.00 |
| AJ-17 | PID2 deviation excessive level | (\%) | 3.00 |
| AJ-18 | PID2 feedback comparison signal OFF level | ( | 100.00 |
| AJ-19 | PID2 feedback comparison signal ON level |  | 0.00 |
| AJ-20 to 30 | PID3 selection | Same as AH-01 to AH-10 | - |
| AJ-32 | PID3 feedback data input destination selection | Same as AH-52 | 02 |
| AJ-33 to 39 | PID3 | Same as AJ-13 to AJ-19 | - |
| AJ-41 to 50 | PID4 selection | Same as AH-01 to AH-10 | - |
| AJ-52 | PID4 feedback data input destination selection | Same as AH-52 | 02 |
| AJ-53 to 59 | PID4 | Same as AJ-13 to AJ-19 | - |

Parameter mode (code B)

| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| bA101 | First frequency upper limit selection | 00 (Disabling)/01(VRF terminal input)/02 (IRF terminal input) 03 (VF2 terminal input)/04 (Ai4 terminal input)/05 (Ai5 terminal input) 06 (Ai6 terminal input)/07 (Parameter setting)/08 (RS485)/09 (Option 1) 10 (Option 2)/11 (Option 3)/12 (Pulse string input (main body)) <br> 13 (Pulse string input HF-FB) | 00 |
| bA102 | First frequency upper limiter |  |  |
| bA103 | First frequency lower limiter | 0.00~590.00 (Hz) | 0.00 |
| bA110 | First torque limit selection | 00 (Disable)/01 (VRF terminal input)/02 (IRF terminal input) 03 (VF2 terminal input)/04 (Ai4 terminal input)/05 (Ai5 terminal input) 06 (Ai6 terminal input)/07 (Parameter setting)/08 (RS 485)/09 (Option 1) 10 (Option 2)/11 (Option 3) | 07 |
| bA111 | First torque limit parameter mode selection | 00 (Four quadrant specific)/01 ([TRQ] terminal switch) | 00 |
| bA112 | First torque limit 1 <br> (Four quadrant normal powered) |  |  |
| bA113 | First torque limit 2 <br> (Four quadrant reverse rotation regeneration) | 0.0~500.0 (\%) |  |
| bA114 | First torque limit 3 <br> (Four quadrant reverse powered) | (Limited at a torque equivalent to 200\% of inverter ND rating) | 200.0 |
| bA115 | First torque limit 4 <br> (Four quadrant normal rotation regeneration) |  |  |
| bA116 | First torque LAD stop selection | 00 (Disabled) | 00 |
| bA120 | First overcurrent suppression selection | 01 (Enabled) | 0 |
| bA121 | First overcurrent suppression level | (0.00 to 2.50 ) $\times$ Inverter rated current (A) | Note: 1. |
| bA122 | First stall prevention 1 selection | 00 (Disabled) <br> 01 (Accelerate at constant speed) <br> 02 (Only constant speed) <br> 03 (Accelerate at constant speed/Increase speed at regeneration) | 01 |
| bA123 | First stall prevention level 1 | (0.20 to 2.50 ) $\times$ Inverter rated current (A) | Note: 2. |
| bA124 | First stall prevention 1 operation time | 0.10~3600.00 (s) | 1.00 |
| bA126 | First stall prevention 2 selection | 00 (Disabled) <br> 01 (Accelerate at constant speed) <br> 02 (Only constant speed) <br> 03 (Accelerate at constant speed/Increase speed at regeneration) | 01 |
| bA127 | First stall prevention level 2 | (0.20 to 2.50 ) $\times$ Inverter rated current (A) | Note: 2. |
| bA128 | First stall prevention 2 operation time | 0.10~3600.00 (s) | 1.00 |
| bA-30 | Instantaneous power failure non-stop selection | 00 (Disabled)/01 (Enabled: deceleration stop) 02 (Enabled: no recovery)/03 (Enabled: with recovery) | 00 |
| bA-31 | Instantaneous power failure non-stop function starting voltage | (200V class) 0.0-410.0 (V) <br> ( 400 V class) $0.0-820.0(\mathrm{~V})$ | $\begin{aligned} & 220.0 \\ & 440.0 \end{aligned}$ |
| bA-32 | Instantaneous power failure non-stop target level | (200V class) 0.0-410.0 (V) <br> (400V class) 0.0-820.0 (V) | $\begin{aligned} & 360.0 \\ & 720.0 \end{aligned}$ |
| bA-34 | Instantaneous power failure non-stop deceleration time | 0.01~3600.00 (s) | 1.00 |
| bA-36 | Instantaneous power failure non-stop deceleration starting range | 0.00~10.00 (Hz) | 0.00 |
| bA-37 | Instantaneous power failure non-stop constant DC voltage control P gain | 0.00~5.00 | 0.20 |
| bA-38 | Instantaneous power failure non-stop constant DC voltage control I gain | 0.00~150.00 (s) | 1.00 |
| bA140 | First overvoltage suppression function | 00 (Disabled) <br> 01 (DC voltage constant deceleration) <br> 02 (Acceleration only at deceleration) <br> 03 (Acceleration at constant speed/deceleration) | 00 |
| bA141 | First overvoltage suppression level setting | (200V class) 330.0-400.0 (V) <br> (400V class) 660.0-800.0 (V) | $\begin{aligned} & 380.0 \\ & 760.0 \end{aligned}$ |
| bA142 | First overvoltage suppression operating time | 0.00~3600.00 (s) | 1.00 |
| bA144 | First DC voltage control P gain | 0.00~5.00 | 0.20 |
| bA145 | First DC voltage control I gain | 0.00~150.00 (s) | 1.00 |
| bA146 | First over-excitation function selection | 00 (Disabled)/01 (Regular operation) <br> 02 (Operation only at deceleration) <br> 03 (Level mode)/04 (Level mode only at deceleration) | 00 |
| bA147 | First over-excitation filter time constant | 0.00~1.00(s) | 0.30 |
| bA148 | First over-excitation voltage gain | 50~400 (\%) | 100 |
| bA149 | First over-excitation suppression level setting | (200V class) 330.0-400.0 (V) <br> (400V class) 660.0-800.0 (V) | $\begin{aligned} & 360.0 \\ & 720.0 \end{aligned}$ |
| bA-60 | Braking resistor operation circuit (DBTR) use rate | $0.0-10.0 \times$ ([bA-63]/minimum resistance) ${ }^{2}(\%)^{\text {Note: } 3 .}$ | 10.0 |
| bA-61 | Braking resistor circuit (DBTR) selection | 00 (Disabled)/01 (Enabled: disabled at stop) 02 (Enabled: enabled at stop) | 00 |
| bA-62 | Braking resistor circuit (DBTR) ON level | (200V class) 330.0-400.0 (V) <br> (400V class) 660.0-800.0 (V) | $\begin{aligned} & 360.0 \\ & 720.0 \end{aligned}$ |
| bA-63 | Braking resistor circuit (DBTR) resistance | Minimum resistance - 600 ( $\Omega$ ) | Note: 3. |
| bA-70 | Selection of the cooling fan operation | 00 (Always ON) <br> 01 (ON during operation) <br> 02 (Temperature dependent) | 00 |
| bA-71 | Clear cumulative operating time of cooling fan | 00 (Disabled)/01 (Clear) | 00 |

Note: 1. $2.00 \times$ Inverter rated current (A)
2. $1.70 \times$ Inverter rated current $(A)$
3. The minimum resistance varies depending on inverter models

| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| bA201 | Second frequency upper limit selection | Same as bA101 | 00 |
| bA202 | Second frequency upper limiter | Same as bA102 | 0.00 |
| bA203 | Second frequency lower limiter | Same as bA103 | 0.00 |
| bA210 | Second torque limit selection | Same as bA110 | 07 |
| bA211 | Second torque limit parameter mode selection | Same as bA111 | 00 |
| bA212 | Second torque limit 1 (Four quadrant normal powering) | Same as bA112 | 200.0 |
| bA213 | Second torque limit 2 <br> (Four quadrant reverse rotation regeneration) | Same as bA113 |  |
| bA214 | Second torque limit 3 (Four quadrant reverse powering) | Same as bA114 |  |
| bA215 | Second torque limit 4 <br> (Four quadrant normal rotation regeneration) | Same as bA115 |  |
| bA216 | Second torque LAD stop selection | Same as bA116 | 00 |
| bA220 | Second overcurrent suppression selection | Same as bA120 | 00 |
| bA221 | Second overcurrent suppression level | Same as bA121 | Note: 1. |
| bA222 | Second stall prevention 1 selection | Same as bA122 | 01 |
| bA223 | Second stall prevention level 1 | Same as bA123 | Note: 2. |
| bA224 | Second stall prevention 1 operation time | Same as bA124 | 1.00 |
| bA226 | Second stall prevention 2 selection | Same as bA126 | 00 |
| bA227 | Second stall prevention level 2 | Same as bA127 | Note: 2. |
| bA228 | Second stall prevention 2 operation time | Same as bA128 | 1.00 |
| bA240 | Second overvoltage suppression function | Same as bA140 | 00 |
| bA241 | Second overvoltage suppression level setting | Same as bA141 | 380.0/760.0 |
| bA242 | Second overvoltage suppression operating time | Same as bA142 | 1.00 |
| bA244 | Second DC voltage control P gain | Same as bA144 | 0.20 |
| bA245 | Second DC voltage control I gain | Same as bA145 | 1.00 |
| bA246 | Second over-excitation function selection | Same as bA146 | 02 |
| bA247 | Second over-excitation filter time constant | Same as bA147 | 0.30 |
| bA248 | Second over-excitation voltage gain | Same as bA148 | 100 |
| bA249 | Second over-excitation suppression level setting | Same as bA149 | 360.0/720.0 |
| bb101 | First carrier frequency | [Ub-03]=02: Normal duty:0.5~16.0 (kHz) <br> [Ub-03]=01: Low duty:0.5~12.0 (kHz) <br> [Ub-03]=00: Very low duty:0.5~10.0 (kHz) | 2.0 |
| bb102 | First sprinkle carrier pattern selection | 00 (Disabled)/01 (Pattern 1 enabled) 02 (Pattern 2 enabled)/03 (Pattern 3 enabled) | 00 |
| bb103 | First automatic carrier frequency reduction selection | 00 (Disabled)/01 (Enabled: current)/02 (Enabled: temperature) | 00 |
| bb-10 | Auto-reset selection | 00 (Disabled)/01 (Enabled with operation command OFF) 02 (Enable after the setting time) | 00 |
| bb-11 | Auto-reset alarm selection | 00 (Output)/01 (Not output) | 00 |
| bb-12 | Auto-reset waiting time | 0~600 (s) | 2 |
| bb-13 | Auto-reset count | 0~10 | 3 |
| bb-20 | Instantaneous power failure retry count | 0~16/255 | 0 |
| bb-21 | Undervoltage retry count |  |  |
| bb-22 | Overcurrent retry count | 0~5 | 0 |
| bb-23 | Overvoltage retry count |  |  |
| bb-24 | Selection of instantaneous power failure/undervoltage retry | $00(0 \mathrm{~Hz}) / 01$ (Frequency matching)/02 (Frequency entrainment) <br> 03 (Detection speed)/ <br> 04 (Trip after frequency matching deceleration stop) | 01 |
| bb-25 | Allowable instantaneous power failure time | 0.3~25.0 (s) | 1.0 |
| bb-26 | Retry wait time after instantaneous power failure/undervoltage | 0.3~100.0 (s) | 0.3 |
| bb-27 | Instantaneous power failure/undervoltage tripping selection during stop | 00 (Disabled)/01 (Enabled at stop) <br> 02 (Disabled at stop and deceleration stop) | 00 |
| bb-28 | Overcurrent trip/retry selection | $00(0 \mathrm{~Hz}) / 01$ (Frequency matching)/02 (Frequency entrainment) <br> 03 (Detection speed) <br> 04 (Trip after frequency matching deceleration stop) | 01 |
| bb-29 | Retry wait time after overcurrent | 0.3~100.0 (s) | 0.3 |
| bb-30 | Overvotage tripping retry selection | $00(0 \mathrm{~Hz}) / 01$ (Frequency matching)/02 (Frequency entrainment) <br> 03 (Detection speed) <br> 04 (Trip after frequency matching deceleration stop) | 01 |
| bb-31 | Overvoltage retry standby time | 0.3~100.0 (s) | 0.3 |
| bb-40 | Restart mode after free-run (MBS) stop | $00(0 \mathrm{~Hz}) / 01$ (Frequency matching)/02 (Frequency entrainment) 03 (Detection speed) | 00 |
| bb-41 | Restart mode after reset (RST) |  |  |
| bb-42 | Frequency matching lower limit setting | 0.00~590.00 (Hz) | 0.00 |
| bb-43 | Level of frequency pull-in restart | (0.20 to 2.50) $\times$ Inverter rated current (A) | Note: 3. |
| bb-44 | Constant (frequency) of frequency pull-in restart | 0.10~30.00 (s) | 0.50 |
| bb-45 | Constant (voltage) of frequency pull-in restart |  |  |
| bb-46 | Overcurrent suppression level of frequency pull-in restart | (0.00 to 2.50) $\times$ Inverter rated current (A) | Note: 3. |
| bb-47 | Start frequency selection of frequency pull-in restart | 00 (Cutoff frequency)/01 (Maximum frequency)/ <br> 02 (Setting frequency) | 00 |
| bb-50 | Frequency matching filter gain | 0~1000 (\%) | 50 |
| bb160 | First overcurrent detection level | Depend on the inverter model | - |
| bb-61 | Excessive voltage of accepted power | 00 (Warning)/01 (Error) | 00 |
| bb-62 | Incoming overvoltage level selection | $\begin{array}{\|l} \hline(200 \mathrm{~V} \text { class) } 300.0-410.0 \text { (V) } \\ (400 \mathrm{~V} \text { class) } 600.0-820.0(\mathrm{~V}) \\ \hline \end{array}$ | $\begin{array}{r} 390.0 \\ 780.0 \\ \hline \end{array}$ |
| bb-64 | Ground fault detection selection | 00 (Disabled)/01 (Enabled) | 01 |
| bb-65 | Input phase loss selection |  | 00 |
| bb-66 | Output phase loss selection | 00 (Disabled)/01 (Enabled) | 00 |
| bb-67 | Output phase loss detection sensitivity | 1~100 (\%) | 10 |

Note: 1. $2.00 \times$ Inverter rated current (A)
2. $1.70 \times$ Inverter rated current $(A)$
3. $1.00 \times$ Inverter rated current $(\mathrm{A})$

| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| bb-70 | Thermistor error level | 0~10000 ( $\Omega$ ) | 3000 |
| bb-80 | Over-speed error detection level setting | 0.0~150.0 (\%) | 135.0 |
| bb-81 | Over-speed error detection time | 0.0~5.0 (s) | 0.5 |
| bb-82 | Operation for speed deviation error | 00 (Warning)/01 (Error) | 00 |
| bb-83 | Speed deviation error detection level setting | 0.0~100.0 (\%) | 15.0 |
| bb-84 | Speed deviation error detection time | 0.0~5.0 (s) | 0.5 |
| bb-85 | Behavior when the position deviation is abnormal | 00 (Warning)/01 (Error) | 00 |
| bb-86 | Abnormal position deviation detection level | 0.0~65535 ( $\times 100 \mathrm{pls}$ ) | 4096 |
| bb-87 | Abnormal position deviation time | 0.0~5.0 (s) | 0.5 |
| bb201 | Second carrier frequency | Same as bb101 | 2.0 |
| bb202 | Second sprinkle carrier pattern selection | Same as bb102 | 00 |
| bb203 | Second automatic carrier frequency reduction selection | Same as bb103 | 00 |
| bb260 | Second overcurrent detection level | Same as bb160 | - |
| bC110 | First electronic thermal level | (0.00-3.00) $\times$ Inverter rated current | $\begin{gathered} 1.0 \times \\ \text { rated current } \end{gathered}$ |
| bC111 | First electronic thermal characteristics selection | 00 (Reduction characteristics) <br> 01 (Constant torque characteristics)/02 (Arbitrary setting) | 00 |
| bC112 | First electronic thermal subtraction function selection | 00 (Disabled)/01 (Enabled) | 01 |
| bC113 | First electronic thermal subtraction time | 1~1000 (s) | 600 |
| bC-14 | Electronic thermal counter memory at power-off | 00 (Disabled)/01 (Enabled) | 01 |
| bC120 | First free electronic thermal frequency 1 | $0.00 \sim[\mathrm{bC122]}$ ( Hz ) | 0.00 |
| bC121 | First free electronic thermal current 1 | (0.00~3.00) $\times$ Inverter rated current | 0.00 |
| bC122 | First free electronic thermal frequency 2 | [bC120] [bC124] (Hz) | 0.00 |
| bC123 | First free electronic thermal current 2 | (0.00~3.00) $\times$ Inverter rated current | 0.00 |
| bC124 | First free electronic thermal frequency 3 | [bC122] 590.00 (Hz) | 0.00 |
| bC125 | First free electronic thermal current 3 | (0.00~3.00) $\times$ Inverter rated current | 0.00 |
| bC210 | Second electronic thermal level | Same as bC110 | $\begin{gathered} 1.0 \times \\ \text { rated current } \end{gathered}$ |
| bC211 | Second electronic thermal characteristics selection | Same as bC111 | 00 |
| bC212 | Second electronic thermal subtraction function selection | Same as bC112 | 01 |
| bC213 | Second electronic thermal subtraction time | Same as bC113 | 600 |
| bC220 | Second free electronic thermal frequency 1 | Same as bC120 | 0.00 |
| bC221 | Second free electronic thermal current 1 | Same as bC121 | 0.00 |
| bC222 | Second free electronic thermal frequency 2 | Same as bC122 | 0.00 |
| bC223 | Second free electronic thermal current 2 | Same as bC123 | 0.00 |
| bC224 | Second free electronic thermal frequency 3 | Same as bC124 | 0.00 |
| bC225 | Second free electronic thermal current 3 | Same as bC125 | 0.00 |
| bd-01 | STO input indication selection | 00 (With indication)/01 (Without indication)/02 (Trip) | 00 |
| bd-02 | STO allowable input switch time | 0.00~60.00 (s) | 1.00 |
| bd-03 | STO indication selection within allowable input time | 00 (With indication)/01 (Without indication) | 00 |
| bd-04 | STOoperation selection after allowable input time | 00 (Retain only the condition)/01 (Disabled)/02 (Trip) | 00 |

$\square$ Parameter mode (code C)

| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| CA-01 | Input terminal function [FR] selection | See <List of input terminal functions> | 001 |
| CA-02 | Input terminal function [RR] selection |  | 002 |
| CA-03 | Input terminal function [DFL] selection |  | 003 |
| CA-04 | Input terminal function [DFM] selection |  | 004 |
| CA-05 | Input terminal function [AUT] selection |  | 015 |
| CA-06 | Input terminal function [MBS] selection |  | 032 |
| CA-07 | Input terminal function [JOG] selection |  | 029 |
| CA-08 | Input terminal function [ES] selection |  | 033 |
| CA-09 | Input terminal function [RST] selection |  | 028 |
| CA-10 | Input terminal function [DFH] selection |  | 005 |
| CA-11 | Input terminal function [DHH] selection |  | 006 |
| CA-21 | Selection of Input terminal [FR] a/b (NO/NC) | 00 (Normally open)/01 (Normally closed) | 00 |
| CA-22 | Selection of Input terminal [RR] a/b (NO/NC) |  |  |
| CA-23 | Selection of Input terminal [DFL] a/b (NO/NC) |  |  |
| CA-24 | Selection of Input terminal [DFH] a/b (NO/NC) |  |  |
| CA-25 | Selection of Input terminal [AUT] a/b (NO/NC) |  |  |
| CA-26 | Selection of Input terminal [MBS] a/b (NO/NC) |  |  |
| CA-27 | Selection of Input terminal [JOG] a/b (NO/NC) |  |  |
| CA-28 | Selection of Input terminal [ES] a/b (NO/NC) |  |  |
| CA-29 | Selection of Input terminal [RST] a/b (NO/NC) |  |  |
| CA-30 | Selection of Input terminal [DFH] a/b (NO/NC) |  |  |
| CA-31 | Selection of Input terminal [DHH] a/b (NO/NC) |  |  |
| CA-41 | Input terminal [FR] response time | 0~400 (ms) | 2 |
| CA-42 | Input terminal [RR] response time |  |  |
| CA-43 | Input terminal [DFL] response time |  |  |
| CA-44 | Input terminal [DFM] response time |  |  |
| CA-45 | Input terminal [AUT] response time |  |  |
| CA-46 | Input terminal [MBS] response time |  |  |
| CA-47 | Input terminal [JOG] response time |  |  |
| CA-48 | Input terminal [ES] response time |  |  |
| CA-49 | Input terminal [RST] response time |  | 2 |
| CA-50 | Input terminal [DFH] response time |  |  |
| CA-51 | Input terminal [DHH] response time |  |  |
| CA-55 | Multi-step input determination time | 0~200 (ms) | 0 |
| CA-60 | UP/DWN target selection | 00 (Frequency command)/01 (PID1) | 00 |
| CA-61 | UP/DWN memory selection | 00 (Not save)/01 (Save) | 00 |


| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| CA-62 | UP/DWN UDC mode selection | $00(0 \mathrm{~Hz}) / 01$ (saved data) | 00 |
| CA-64 | Acceleration time for UP/DWN functions | 0.00~3600.00 (s) | 30.00 |
| CA-66 | Deceleration time for UP/DWN functions |  |  |
| CA-70 | [F-OP] frequency command | 01 (VRF terminal input)/02 (IRF terminal input)/03 (VF2 terminal input) 04 (Ai4 terminal input)/05 (Ai5 terminal input)/06 (Ai6 terminal input) <br> 07 (Parameter setting)/08 (RS 485)/09 (Option 1)/10 (Option 2) <br> 11 (Option 3)/12 (Pulse string input: main unit) <br> 13 (Pulse string input: HF-FB)/14 (Program function) <br> 15 (PID calculation)/16 (Reserved) | 01 |
| CA-71 | [F-OP] Operation command | 00 ([FR]/[RR] terminal)/01 (3 wire)/02 (RUN key on operator keypad) 03 (RS485)/04 (Option 1)/05 (Option 2)/06 (Option 3) | 00 |
| CA-72 | Reset selection | 00 (On to Release Trip)/01 (Off to Release Trip)/02 (On to Release at Trip) 03 (Of to Release at Trip) | 00 |
| CA-81 | Encoder constant set-up | 32~65535 (pls) | 1024 |
| CA-82 | Encoder phase sequence selection | 00 (Phase-A is leading)/01 (Phase-B is leading) | 00 |
| CA-83 | Motor gear ratio's numerator | 1~10000 | 1 |
| CA-84 | Motor gear ratio's denominator |  |  |
| CA-90 | Pulse string input (main body) detection target selection | 00 (Pulse count)/01 (Frequency command)/02 (Speed feedback) 03 (Pulse count) | 00 |
| CA-91 | Pulse string input (main body) mode selection | 00 ( $90^{\circ}$ phase difference) <br> 01 (forward/reverse rotation command and rotation direction) <br> 02 (forward/reverse rotation pulse string) | 00 |
| CA-92 | Pulse string frequency (main body) scale | $0.05 \sim 32.00$ (kHz) | 25.00 |
| CA-93 | Pulse string frequency (main body) filter time constant | 0.01~2.00 (s) | 0.10 |
| CA-94 | Pulse string frequency (main body) bias size | -100.0~100.0 (\%) | 0.0 |
| CA-95 | Pulse string frequency (main body) upper detection limit | 0.0~100.0 (\%) | 100.0 |
| CA-96 | Pulse string frequency (main body) lower detection limit |  | 0.0 |
| CA-97 | Pulse count compare-match output ON level | 0~65535 | 0 |
| CA-98 | Pulse count compare-match output OFF level |  | 0 |
| CA-99 | Maximum value for pulse count compare-match output |  | 65535 |
| Cb -01 | [VRF] terminal input filter time constant | 1~500 (ms) | 500 |
| $\mathrm{Cb}-03$ | [VRF] terminal frequency setting start amount | 0.00~100.00 (\%) | 0.00 |
| $\mathrm{Cb}-04$ | [VRF] terminal frequency setting end amount |  | 100.00 |
| Cb-05 | [VRF] terminal analog input start ratio | 0.0~ [Cb-06] (\%) | 0.0 |
| Cb-06 | [VRF] terminal analog input end ratio | [Cb-05]~100.0 (\%) | 100.0 |
| $\mathrm{Cb}-07$ | [VRF] terminal start selection | 00 (Start amount)/01 (0\%) | 01 |
| Cb-11 | [IRF] terminal input filter time constant | 1~500 (ms) | 500 |
| $\mathrm{Cb}-13$ | [IRF] terminal frequency setting start amount | 0.00~100.00 (\%) | 0.00 |
| $\mathrm{Cb}-14$ | [IRF] terminal frequency setting end amount |  | 100.00 |
| $\mathrm{Cb}-15$ | [IRF] terminal analog input start ratio | 0.0~ [Cb-16] (\%) | 20.0 |
| $\mathrm{Cb}-16$ | [IRF] terminal analog input end ratio | [Cb-15]~100.0 (\%) | 100.0 |
| Cb-17 | [IRF] terminal start selection | 00 (Start amount)/01 (0\%) | 01 |
| $\mathrm{Cb}-21$ | [VF2] terminal input filter time constant | 1~500 (ms) | 500 |
| $\mathrm{Cb}-22$ | [VF2] terminal selection | 00 (Single)/01 (Added to VRF/IRF: with reversibility) <br> 02 (Added to VRF/IRF: without reversibility) | 00 |
| $\mathrm{Cb}-23$ | [VF2] terminal frequency setting start amount | -100.00~100.00 (\%) | -100.00 |
| $\mathrm{Cb}-24$ | [VF2] terminal frequency setting end amount |  | 100.00 |
| $\mathrm{Cb}-25$ | [VF2] terminal analog input start ratio | $\begin{aligned} & \hline-100 \\ & .0 \sim[\mathrm{Cb}-26] \end{aligned}$ | -100.0 |
| $\mathrm{Cb}-26$ | [VF2] terminal analog input end ratio | [Cb-25]~100.0 | 100.0 |
| Cb -30 | [VRF] voltage/current bias adjustment | -100.00~100.00 | 0.00 |
| Cb -31 | [VRF] voltage/current adjustment gain | 0~200.00 | 100.00 |
| Cb -32 | [IRF] voltage/current bias adjustment | -100.00~100.00 | 0.00 |
| Cb -33 | [IRF] voltage/current adjustment gain | 0~200.00 | 100.00 |
| Cb -34 | [VF2] voltage bias adjustment | -100.00~100.00 | 0.00 |
| Cb -35 | [VF2] voltage adjustment gain | 0~200.00 | 100.00 |
| $\mathrm{Cb}-40$ | Thermistor selection | 00 (Disabled)/01 (PTC resistance value enabled) 02 (NTC resistance value enabled) | 00 |
| Cb-41 | Thermistor [TH+/TH-] adjustment | 0.0~1000.0 | 100.0 |
| CC-01 | Selection of output terminal function [UPF] | See <List of output terminal functions> | 002 |
| CC-02 | Selection of output terminal function [DRV] |  | 001 |
| CC-03 | Selection of output terminal function [X1] |  | 003 |
| CC-04 | Selection of output terminal function [X2] |  | 007 |
| CC-05 | Selection of output terminal function [X3] |  | 035 |
| CC-06 | Selection of output terminal function [RL] |  | 000 |
| CC-07 | Selection of output terminal function [FL] |  | 017 |
| CC-11 | Selection of output terminal [UPF] $\mathrm{a} / \mathrm{b}$ (NO/NC) | 00 (Normally open)/01 (Normally closed) | 00 |
| CC-12 | Selection of output terminal [DRV] a/b (NO/NC) |  |  |
| CC-13 | Selection of output terminal [X1] a/b (NO/NC) |  |  |
| CC-14 | Selection of output terminal [X2] a/b ( $\mathrm{NO} / \mathrm{NC)}$ |  |  |
| CC-15 | Selection of output terminal [X3] a/b (NO/NC) |  |  |
| CC-16 | Selection of output terminal [RL] $\mathrm{a} / \mathrm{b}(\mathrm{NO} / \mathrm{NC})$ |  |  |
| CC-17 | Selection of output terminal [FL] a/b (NO/NC) |  | 01 |
| CC-20 | Output terminal [UPF] on-delay time | 0.00~100.00 (s) | 0.00 |
| CC-21 | Output terminal [UPF off-delay time |  |  |
| CC-22 | Output terminal [DRV] on-delay time |  |  |
| CC-23 | Output terminal [DRV] off-delay time |  |  |
| CC-24 | Output terminal [X1] on-delay time |  |  |
| CC-25 | Output terminal [X1] off-delay time |  |  |
| CC-26 | Output terminal [X2] on-delay time |  |  |


| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| CC-27 | Output terminal [X2] off-delay time | 0.00~100.00 (s) | 0.00 |
| CC-28 | Output terminal [X3] on-delay time |  |  |
| CC-29 | Output terminal [X3] off-delay time |  |  |
| CC-30 | Output terminal [RL] on-delay time |  |  |
| CC-31 | Output terminal [RL] off-delay time |  |  |
| CC-32 | Output terminal [FL] on-delay time |  |  |
| CC-33 | Output terminal [FL] off-delay time |  |  |
| CC-40 | Logical calculation output signal LOG1 selection 1 | See <List of output terminal functions> | 000 |
| CC-41 | Logical calculation output signal LOG1 selection 2 |  |  |
| CC-42 | Logical calculation output signal LOG1 operator selection | 00 (AND)/01 (OR)/02 (XOR) | 00 |
| CC-43 | Logical calculation output signal LOG2 selection 1 | See <List of output terminal functions> | 000 |
| CC-44 | Logical calculation output signal LOG2 selection 2 |  |  |
| CC-45 | Logical calculation output signal LOG2 operator selection | 00 (AND)/01 (OR)/02 (XOR) | 00 |
| CC-46 | Logical calculation output signal LOG3 selection 1 | See <List of output terminal functions> | 000 |
| CC-47 | Logical calculation output signal LOG3 selection 2 |  |  |
| CC-48 | Logical calculation output signal LOG3 operator selection | 00 (AND)/01 (OR)/02 (XOR) | 00 |
| CC-49 | Logical calculation output signal LOG4 selection 1 | See <List of output terminal functions> | 000 |
| CC-50 | Logical calculation output signal LOG4 selection 2 |  |  |
| CC-51 | Logical calculation output signal LOG4 operator selection | 00 (AND)/01 (OR)/02 (XOR) | 00 |
| CC-52 | Logical calculation output signal LOG5 selection 1 | See <List of output terminal functions> | 000 |
| CC-53 | Logical calculation output signal LOG5 selection 2 |  |  |
| CC-54 | Logical calculation output signal LOG5 operator selection | 00 (AND)/01 (OR)/02 (XOR) | 00 |
| CC-55 | Logical calculation output signal LOG6 selection 1 | See <List of output terminal functions> | 000 |
| CC-56 | Logical calculation output signal LOG6 selection 2 |  |  |
| CC-57 | Logical calculation output signal LOG6 operator selection | 00 (AND)/01 (OR)/02 (XOR) | 00 |
| CC-58 | Logical calculation output signal LOG7 selection 1 | See <List of output terminal functions> | 000 |
| CC-59 | Logical calculation output signal LOG7 selection 2 |  |  |
| CC-60 | Logical calculation output signal LOG7 operator selection | 00 (AND)/01 (OR)/02 (XOR) | 00 |
| Cd-01 | [FRQ] terminal output form selection | 00 (PWM)/01 (frequency) | 00 |
| Cd-02 | [FRQ] terminal standard frequency (for PWM output) | $0 \sim 3600$ (kHz) | 2880 |
| Cd-03 | [FRQ] terminal output selection | See the List of output monitor functions | [dA-01] |
| Cd-04 | [AMV] terminal output selection |  |  |
| Cd-05 | [AMI] terminal output selection |  |  |
| Cd-10 | Analog monitor adjustment mode selection | 00 (Disabled)/01 (Enabled) | 00 |
| Cd -11 | [FRQ] output filter time constant | 1~500 (ms) | 100 |
| Cd -12 | [FRQ] output data type selection | 00 (absolute value)/01 (with sign) | 00 |
| Cd -13 | [FRQ] bias adjustment | -100.0~100.0 (\%) | 0.0 |
| Cd-14 | [FRQ] gain adjustment | -1000.0~1000.0 (\%) | 100.0 |
| Cd-15 | [FRQ] output level in the adjustment mode | -100.0~100.0 (\%) |  |
| Cd-21 | [AMV] output filter time constant | 1~500 (ms) | 100 |
| Cd-22 | [AMV] output data type selection | 00 (absolute value)/01 (with sign) | 00 |
| Cd-23 | [AMV] bias adjustment | -100.0~100.0 (\%) | 0.0 |
| Cd-24 | [AMV] gain adjustment | -1000.0~1000.0 (\%) | 100.0 |
| Cd-25 | [AMV] output level in the adjustment mode | $-100.0 \sim 100.0$ (\%) |  |
| Cd-31 | [AMI] output filter time constant | 1~500 (ms) | 100 |
| Cd-32 | [AMI] output data type selection | 00 (absolute value)/01 (with sign) | 00 |
| Cd-33 | [AMI] bias adjustment | -100.0~100.0 (\%) | 20.0 |
| Cd-34 | [AMI] gain adjustment | -1000.0~1000.0 (\%) | 80.0 |
| Cd-35 | [AMI] output level in the adjustment mode | -100.0~100.0 (\%) | 100.0 |
| CE101 | First low current signal output mode selection | 00 (During acceleration/deceleration, at constant speed) <br> 01 (Only at constant speed) | 01 |
| CE102 | First low current detection level 1 | (0.00 to 2.00) $\times$ Inverter rated current | $\stackrel{1.0 \times}{\text { rated current }}$ |
| CE103 | First low current detection level 2 |  |  |
| CE105 | First overload prewarning signal output mode selection | 00 (During acceleration/deceleration, at constant speed) 01 (Only at constant speed) | 01 |
| CE106 | First overload prewarning level 1 | (0.00 to 2.00) $\times$ Inverter rated current | $1.0 \times$ |
| CE107 | First overload prewarning level 2 | (0.00 to 2.00) $\times$ Inverter rated current | rated current |
| CE-10 | Acceleration reaching frequency 1 | 0.00~590.00 (Hz) | 0.00 |
| CE-11 | Deceleration reaching frequency 1 |  |  |
| CE-12 | Acceleration reaching frequency 2 |  |  |
| CE-13 | Deceleration reaching frequency 2 |  |  |
| CE120 | First over torque level (normal powered) | 0.0~500.0 (\%) | 100.0 |
| CE121 | First over torque level (reverse regenerative) |  |  |
| CE122 | First over torque level (reverse powered) |  |  |
| CE123 | First over torque level (normal regenerative) |  |  |
| CE-30 | Electronic thermal warning level (motor) | 0.00~100.00 (\%) | 85.00 |
| CE-31 | Electronic thermal warning level (inverter) |  |  |
| CE-33 | $\mathrm{O}-\mathrm{Hz}$ detection value level |  | 0.50 |
| CE-34 | Cooling fin heating prewarning level | 0~200 ( ${ }^{\circ} \mathrm{C}$ ) | 120 |
| CE-36 | RUN time/power-on time level | 0~100000 (hr) | 0 |
| CE-40 | Window comparator [VRF] upper limit level | 0~100 (\%) | 100 |
| CE-41 | Window comparator [VRF] lower limit level |  | 0 |
| CE-42 | Window comparator [VRF] hysteresis range | 0~10 (\%) | 0 |
| CE-43 | Window comparator [IRF] upper limit level | 0~100 (\%) | 100 |
| CE-44 | Window comparator [IRF] lower limit level |  | 0 |
| CE-45 | Window comparator [IRF] hysteresis range | 0~10 (\%) | 0 |
| CE-46 | Window comparator [VF2] lower limit level | $-100 \sim 100$ (\%) | 100 |
| CE-47 | Window comparator [VF2] lower limit level |  | -100 |
| CE-48 | Window comparator [VF2] hysteresis range | 0~10 (\%) | 0 |


| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| CE-50 | [VRF] operation level at disconnection | 0~100 (\%) | 0 |
| CE-51 | [VRF] operation level selection at disconnection | 00 (Disabled) <br> 01 (Enabled: out of range) <br> 02 (Enabled: within the range) | 00 |
| CE-52 | [IRF] operation level at disconnection | 0~100(\%) | 0 |
| CE-53 | [IRF] operation level selection at disconnection | 00 (Disabled) <br> 01 (Enabled: out of range) <br> 02 (Enabled: within the range) | 00 |
| CE-54 | [VF2] operation level at disconnection | -100~100(\%) | 0 |
| CE-55 | [VF2] operation level selection at disconnection | 00 (Disabled) <br> 01 (Enabled: out of range) <br> 02 (Enabled: within the range) | 00 |
| CE201 | Second low current signal output mode selection | Same as CE101 | 01 |
| CE202 | Second low current detection level 1 | Same as CE102 | 1.0× |
| CE203 | Second low current detection level 2 | Same as CE103 | rated current |
| CE205 | Second overload prewarning signal output mode selection | Same as CE105 | 01 |
| CE206 | Second overload prewarning level 1 | Same as CE106 | 1.0× |
| CE207 | Second overload prewarning level 2 | Same as CE107 | rated current |
| CE220 | Second over torque level (normal powered) | Same as CE120 | 100.0 |
| CE221 | Second over torque level (reverse regenerative) | Same as CE121 |  |
| CE222 | Second over torque level (reverse powered) | Same as CE122 |  |
| CE223 | Second over torque level (normal regenerative) | Same as CE123 |  |
| CF-01 | Communication transmission speed selection (baudrate selection) | 03 (2400bps)/04 (4800bps) 05 (9600bps)/06 (19.2kbps) 07 (38.4kbps)/08 (57.6kbps) 09 (76.8kbps)/10 (115.2kbps) | 04 |
| CF-02 | Communication station number selection | 1~247 | 1 |
| CF-03 | Communication parity selection | 00 (Without parity) <br> 01 (Even number parity) <br> 02 (Odd number parity) | 00 |
| CF-04 | Communication stop bit selection | 01 (1bit)/02 (2bit) | 01 |
| CF-05 | Communication error selection | 00 (Error) <br> 01 (Trip after deceleration stop) <br> 02 (Ignore) <br> 03 (Free run) <br> 04 (Deceleration stop) | 02 |
| CF-06 | Communication timeout time | 0.00~100.00 (s) | 0.00 |
| CF-07 | Communication waiting time | 0~1000 (ms) | 2 |
| CF-08 | Communication method selection | $\begin{array}{\|l\|} \hline 01 \text { (Modbus-RTU) } \\ 02 \text { (EzCOM) } \\ 03 \text { (EzCOM management) } \\ \hline \end{array}$ | 01 |
| CF-11 | Resister dataA, $\mathrm{V} \Leftrightarrow \%$ conversion function | 00 (A, V)/01 (\%) | 00 |
| CF-20 | EzCOM start INV station number | 01~08 | 01 |
| CF-21 | EzCOM stop INV station number |  |  |
| CF-22 | EzCOM start selection | 00 (ECOM) terminal) <br> 01 (Modbus spec) | 00 |
| CF-23 | Numer of EzCOM data sets | 01~05 | 05 |
| CF-24 | EzCOM transmission destination station number 1 | 1~247 | 1 |
| CF-25 | EzCOM transmission destination register 1 | 0000~FFFF | 0000 |
| CF-26 | EzCOM transmission source register 1 |  |  |
| CF-27 | EzCOM transmission destination station number 2 | 1~247 | 2 |
| CF-28 | EzCOM transmission destination register 2 | 0000~FFFF | 0000 |
| CF-29 | EzCOM transmission source register 2 |  |  |
| CF-30 | EzCOM transmission destination station number 3 | 1~247 | 3 |
| CF-31 | EzCOM transmission destination register 3 | 0000~FFFF | 0000 |
| CF-32 | EzCOM transmission source register 3 |  |  |
| CF-33 | EzCOM transmission destination station number 4 | 1~247 | 4 |
| CF-34 | EzCOM transmission destination register 4 | 0000~FFFF | 0000 |
| CF-35 | EzCOM transmission source register 4 |  |  |
| CF-36 | EzCOM transmission destination station number 5 | 1~247 | 5 |
| CF-37 | EzCOM transmission destination register 5 | 0000~FFFF | 0000 |
| CF-38 | EzCOM transmission source register 5 |  |  |
| CF-50 | USB station number selection | 1~247 | 1 |

Parameter mode (code H)

| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| HA-01 | Auto-tuning selection | 00 (Disabled)/01 (Non-rotation)/02 (Rotation)/03 (IVMS) | 00 |
| HA-02 | Operation command for auto-tuning | 00 (RUN key on the operator keypad)/01 ([AA111]/[AA211]) | 00 |
| HA-03 | Online tuning selection | 00 (Disabled)/01 (Enabled) | 00 |
| HA110 | First stability constant | 0~1000 (\%) | 100 |
| HA112 | First stabilization ramp function end ratio | 0~100 (\%) | 30 |
| HA113 | First stabilization ramp function start ratio |  | 10 |
| HA115 | First speed response | 0~1000 (\%) | 32 |
| HA120 | First gain switch selection | 00 ([CAS] terminal)/01 (setting switch) | 00 |
| HA121 | First gain switch time | 0~10000 (ms) | 100 |
| HA122 | First gain switch intermediate frequency 1 | $0.00 \sim 590.00$ (Hz) | 0.00 |
| HA123 | First gain switch intermediate frequency 2 |  |  |
| HA124 | First gain mapping maximum frequency |  |  |
| HA125 | First gain mapping P gain 1 | 0.0~1000.0 (\%) | 100.0 |
| HA126 | First gain mapping I gain 1 |  |  |
| HA127 | First gain mapping P control P gain 1 |  |  |
| HA128 | First gain mapping P gain 2 |  |  |
| HA129 | First gain mapping I gain 2 |  |  |
| HA130 | First gain mapping P control P gain 2 |  |  |
| HA131 | First gain mapping P gain 3 |  |  |
| HA132 | First gain mapping I gain 3 |  |  |
| HA133 | First gain mapping P gain 4 |  |  |
| HA134 | First gain mapping I gain 4 |  |  |
| HA210 | Second stability constant | Same as HA110 | 100 |
| HA212 | Second stabilization ramp function end ratio | 0~100 (\%) | 30 |
| HA213 | Second stabilization ramp function start ratio |  | 10 |
| HA215 | Second speed response | 0~1000 (\%) | 32 |
| HA220 | Second gain switch selection | 00 ([CAS] terminal)/01 (setting switch) | 00 |
| HA221 | Second gain switch time | 0~10000 (ms) | 100 |
| HA222 | Second gain switch intermediate frequency 1 | 0.00~590.00 (Hz) | 00 |
| HA223 | Second gain switch intermediate frequency 2 |  | 100 |
| HA224 | Second gain mapping maximum frequency |  | 0.00 |
| HA225 | Second gain mapping P gain 1 | 0.0~1000.0 (\%) | 100.0 |
| HA226 | Second gain mapping I gain 1 |  |  |
| HA227 | Second gain mapping P control P gain 1 |  |  |
| HA228 to HA234 | Second gain mapping | Same as HA128 to HA134 | 100.0 |
| Hb101 | Motor setting, 1st-motor | 00:IE1 motor/01:AF motor/02:d2G4 motor/03:IE3 motor | 03 |
| Hb102 | First IM motor capacity selection | $0.01 \sim 75.00$ (kW) | Note: |
| Hb103 | Selection of number of first IM motor poles | 2 to 48 (poles) | 4 |
| Hb104 | First IM base frequency | $10.00 \sim 590.00$ (Hz) | 60.00 |
| Hb105 | First IM maximum frequency |  |  |
| Hb106 | First IM motor's rated voltage | 1~1000 (V) | 200 V class: 200 <br> 400 V class : 400 |
| Hb108 | First IM motor's rated current | 0.01~10000.00 (A) | Note: |
| Hb110 | First IM motor constant R1 | 0.000001~1000.000000 ( $\Omega$ ) |  |
| Hb112 | First IM motor constant R2 |  |  |
| Hb114 | First motor constant L | $0.000001 \sim 1000.000000(\mathrm{mH})$ |  |
| Hb116 | First IM motor constant lo | 0.01~10000.00 (A) |  |
| Hb118 | First IM motor constant J | 0.00001~10000.00000 (kgm) |  |
| Hb130 | First minimum frequency | $0.10 \sim 10.00$ (Hz) | 0.50 |
| Hb131 | First reduced voltage start time | 0~2000 (ms) | 36 |
| Hb140 | First manual torque boost operation mode selection | 00 (Disabled)/01 (Always enabled) <br> 02 (Enabled only for forward revolution) <br> 03 (Enabled only for reverse revolution) | 01 |
| Hb141 | First amount of manual torque boost | 0.0~20.0 (\%) | 1.0 |
| Hb142 | First manual torque boost break point | 0.0~50.0 (\%) | 0.8 |
| Hb145 | First energy-saving operation selection | 00 (Disabled)/01 (Enabled) | 00 |
| Hb146 | First energy-saving response/accuracy adjustment | 0.0~100.0(\%) | 50.0 |
| Hb150 | First free V/f frequency 1 | $0.00 \sim[\mathrm{Hb} 152](\mathrm{Hz})$ | 0.00 |
| Hb151 | First free V/f voltage 1 | $0.0 \sim 1000.0$ (V) | 0.0 |
| Hb152 | First free V/ffrequency 2 | [Hb150]~[Hb154] (Hz) | 0.00 |
| Hb153 | First free V/f voltage 2 | 0.0~1000.0 (V) | 0.0 |
| Hb154 | First free V/f frequency 3 | [Hb152]~[Hb156] (Hz) | 0.00 |
| Hb155 | First free V/f voltage 3 | $0.0 \sim 1000.0$ (V) | 0.0 |
| Hb156 | First free V/ffrequency 4 | [Hb154] [Hb158] (Hz) | 0.00 |
| Hb157 | First free V/f voltage 4 | 0.0~1000.0 (V) | 0.0 |
| Hb158 | First free V/f frequency 5 | [Hb156]~[Hb160] (Hz) | 0.00 |
| Hb159 | First free V/f voltage 5 | 0.0~1000.0 (V) | 0.0 |
| Hb160 | First free V/f frequency 6 | [Hb158]~[Hb162] (Hz) | 0.00 |
| Hb161 | First free V/f voltage 6 | 0.0~1000.0 (V) | 0.0 |
| Hb162 | First free V/f frequency 7 | [Hb160] [Hb104] (Hz) | 0.00 |
| Hb163 | First free V/f voltage 7 | 0.0~1000.0 (V) | 0.0 |
| Hb170 | First slip compensation P gain with sensor(V/f with sensor) | 0~1000 (\%) | 100 |
| Hb171 | First slip compensation I gain with sensor(V/f with sensor) |  |  |
| Hb180 | First output voltage gain | 0~255 (\%) | 100 |

Note: Varies depending on inverter models and settings of duty rating.

| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| Hb201 | Second Motor setting | Same as Hb101 | 03 |
| Hb202 | Second IM motor capacity selection | Same as Hb102 | Note: |
| Hb203 | Selection of number of second IM motor poles | Same as Hb103 | 4 |
| Hb204 | Second IM base frequency | Same as Hb104 |  |
| Hb205 | Second IM maximum frequency | Same as Hb105 | 60.00 |
| Hb206 | Second IM motor's rated voltage | Same as Hb106 | 200 V class : 200 <br> 400 V class: 400 |
| Hb208 | Second IM motor's rated current | Same as Hb108 | Note: |
| Hb210 | Second IM motor constant R1 | Same as Hb110 |  |
| Hb212 | Second IM motor constant R2 | Same as Hb112 |  |
| Hb214 | Second IM motor constant L | Same as Hb114 |  |
| Hb216 | Second IM motor constant lo | Same as Hb116 |  |
| Hb218 | Second IM motor constant J | Same as Hb118 |  |
| Hb230 | Second minimum frequency | Same as Hb130 | 0.50 |
| Hb231 | Second reduced voltage start time | Same as Hb131 | 36 |
| Hb240 | Second manual torque boost operation mode selection | Same as Hb140 | 01 |
| Hb241 | Second amount of manual torque boost | Same as Hb141 | 0.0 |
| Hb242 | Second manual torque boost break point | Same as Hb142 |  |
| Hb245 | Second energy-saving operation selection | Same as Hb145 | 00 |
| Hb246 | Second energy-saving response/accuracy adjustment | Same as Hb146 | 50.0 |
| Hb250 | Second free V/f frequency 1 | Same as Hb150 | 0 |
| Hb251 | Second free V/f voltage 1 | Same as Hb151 | 0.0 |
| Hb252 | Second free V/f frequency 2 | Same as Hb152 | 0.00 |
| Hb253 | Second free V/f voltage 2 | Same as Hb153 | 0.0 |
| Hb254 | Second free V/f frequency 3 | Same as Hb154 | 0.00 |
| Hb255 | Second free V/f voltage 3 | Same as Hb155 | 0.0 |
| Hb256 | Second free V/f frequency 4 | Same as Hb156 | 0.00 |
| Hb257 | Second free V/f voltage 4 | Same as Hb157 | 0.0 |
| Hb258 | Second free V/f frequency 5 | Same as Hb158 | 0.00 |
| Hb259 | Second free V/f voltage 5 | Same as Hb159 | 0.0 |
| Hb260 | Second free V/f frequency 6 | Same as Hb160 | 0.00 |
| Hb261 | Second free V/f voltage 6 | Same as Hb161 | 0.0 |
| Hb262 | Second free V/ffrequency 7 | Same as Hb162 | 0.00 |
| Hb263 | Second free V/f voltage 7 | Same as Hb163 | 0.0 |
| Hb270 | Second slip compensation I gain with sensor (V/f with sensor) | Same as Hb170 | 100 |
| Hb271 | Second slip compensation I gain with sensor (V/f with sensor) | Same as Hb171 |  |
| Hb280 | Second output voltage gain | Same as Hb180 |  |


| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| HC101 | First automatic torque boost voltage compensation gain | 0~255 (\%) |  |
| HC102 | First automatic torque boost slip compensation gain | 0~255 | 100 |
| HC110 | First zero-speed range limiter ( $\mathrm{IM}-\mathrm{OHz}$ ) | 0~100 (\%) |  |
| HC111 | First amount of boost at the start (IM-SLV) | 0~50 (\%) | 0 |
| HC112 | First amount of boost at the start ( $\mathrm{IM}-\mathrm{oHz}$ ) | 0~50 (\%) | 10 |
| HC113 | First selection of secondary-resistance correction that is conducted or not. |  |  |
| HC114 | First selection of reversal prevention | 00 (Disabled)/01 (Enabled) | 00 |
| HC115 | First selection for the torque transformation | 00 (Torque)01 (Current) | 01 |
| HC120 | First time constant for torque current command filter | 0~100 (ms) | 2 |
| HC121 | First speed feed forward gain | 0~1000 | 0 |
| HC137 | First flux setting level | 0.0~100.0 (\%) | 80.0 |
| HC140 | First forcing level | 0~1000 (\%) | 100 |
| HC141 | First modulation threshold level 1 | 0~133 (\%) | 133 |
| HC142 | First modulation threshold level 2 | 0~133 (\%) | 133 |
| HC201 | Second automatic torque boost voltage compensation gain | Same as HC101 |  |
| HC202 | Second automatic torque boost slip compensation gain | Same as HC102 | 100 |
| HC210 | Second zero-speed range limiter (IM-OHz) | Same as HC110 | 80 |
| HC211 | Second amount of boost at the start (IM-SLV) | Same as HC111 | 0 |
| HC212 | Second amount of boost at the start ( $1 \mathrm{M}-\mathrm{oHz}$ ) | Same as HC112 | 10 |
| HC213 | Second selection of whether a secondary-resistance correction is to be conducted. | Same as HC113 | 00 |
| HC214 | Second selection of reversal prevention | Same as HC114 | 00 |
| HC215 | Second selection for the torque transformation | Same as HC115 | 01 |
| HC220 | Second time constant for torque current command filter | Same as HC120 | 2 |
| HC221 | Second speed feed forward gain | Same as HC121 | 0 |
| HC237 | Second flux setting level | Same as HC137 | 80.0 |
| HC240 | Second forcing level | Same as HC140 | 100 |
| HC241 | Second modulation threshold level 1 | Same as HC141 | 133 |
| HC242 | Second modulation threshold level 2 | Same as HC142 | 133 |
| Hd102 | First SM (PMM) motor capacity selection | 0.01~75.00 (kW) |  |
| Hd103 | First selection of number of SM (PMM) motor poles | 2 to 48 (poles) |  |
| Hd104 | First SM (PMM) base frequency | 10.00~590.00 (Hz) |  |
| Hd105 | First SM (PMM) maximum frequency | 10.00~590.00 (Hz) |  |
| Hd106 | First SM (PMM) motor's rated voltage | 1~1000 (V) | Note: |
| Hd108 | First SM (PMM) motor's rated current | 0.01~10000.00 (A) |  |
| Hd110 | First SM (PMM) motor's constant R | 0.000001~1000.000000 ( $\Omega$ ) |  |
| Hd112 | First SM (PMM) motor's constant Ld | $0.000001 \sim 1000.000000(\mathrm{mH})$ |  |
| Hd114 | First SM (PMM) motor's constant Lq | 0.000001~1000.000000 (mH) |  |


| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| Hd116 | First SM (PMM) motor's constant Ke | 0.1~100000.0 (mVs/rad) | Note: 1. |
| Hd118 | First SM (PMM) motor's constant J | 0.00001~10000.00000 (kgm2) |  |
| Hd130 | First SM (PMM) minimum frequency | 0~50 (\%) | 8 |
| Hd131 | First SM (PMM) no-load current | 0~100 (\%) | 10 |
| Hd132 | First SM (PMM) start method selection | 00 (Position estimation disabled) <br> 01 (Position estimation enabled) | 00 |
| Hd133 | First SM (PMM) initial position estimation zero-V stand-by times | 0~255 | 10 |
| Hd134 | First SM (PMM) initial position estimation detection stand-by times |  |  |
| Hd135 | First SM (PMM) initial position estimation detection times |  | 30 |
| Hd136 | First SM (PMM) initial position estimation voltage gain | 0~200 (\%) | 100 |
| Hd137 | First initial position estimation magnetic-pole position offset | 0~359 (deg) | 0 |
| Hd-41 | IVMS carrier frequency ${ }^{\text {Note: } 2 .}$ | $0.5 \sim 16.0$ (kHz) | 2.0 |
| Hd-42 | Filter gain of IVMS detection current ${ }^{\text {Note: } 2 .}$ | 0~1000 | 100 |
| Hd-43 | Open-phase voltage detection gain selection ${ }^{\text {Note: } 2 .}$ | 00 (Gain 0)/01 (Gain 1)/02 (Gain 2)/03 (Gain 3) | 00 |
| Hd-44 | Selection of open-phase switch threshold correction ${ }^{\text {Note: } 2 .}$ | 00 (Disabled)/01 (Enabled) | 01 |
| Hd-45 | Speed control P gain ${ }^{\text {Note: } 2 .}$ | 0~1000 | 100 |
| Hd-46 | Speed control I gain ${ }^{\text {Note: } 2 .}$ | 0~10000 | 100 |
| Hd-47 | Waiting time for open-phase switching ${ }^{\text {Note: } 2 .}$ | 0~1000 | 15 |
| Hd-48 | Restriction on the rotation-direction determination ${ }^{\text {Note: } 2 .}$ | 00 (Disabled)/01 (Enabled) | 01 |
| Hd-49 | Adjustment of the timing for detecting the open-phase voltage ${ }^{\text {Note: } 2 .}$ | 0~1000 | 10 |
| Hd-50 | Minimum pulse-width adjustment ${ }^{\text {Note: } 2 .}$ |  | 100 |
| Hd-51 | Current limit of IVMS threshold ${ }^{\text {Note: } 2 .}$ | 0~255 | 100 |
| Hd-52 | IVMS threshold gain ${ }^{\text {Note: } 2 .}$ |  |  |
| Hd-58 | IVMS carrier-frequency switching start/finish point ${ }^{\text {Note: } 2 .}$ | 0~50 (\%) | 5 |
| Hd202 | Second SM (PMM) motor capacity selection | Same as Hd102 | Note: 1. |
| Hd203 | Second selection of number of SM (PMM) motor poles | Same as Hd103 |  |
| Hd204 | Second SM (PMM) base frequency | Same as Hd104 |  |
| Hd205 | Second SM (PMM) maximum frequency | Same as Hd105 |  |
| Hd206 | Second SM (PMM) motor's rated voltage | Same as Hd106 |  |
| Hd208 | Second SM (PMM) motor's rated current | Same as Hd108 |  |
| Hd210 | Second SM (PMM) motor's constant R | Same as Hd110 |  |
| Hd212 | Second SM (PMM) motor's constant Ld | Same as Hd112 |  |
| Hd214 | Second SM (PMM) motor's constant Lq | Same as Hd114 |  |
| Hd216 | Second SM (PMM) motor's constant Ke | Same as Hd116 |  |
| Hd218 | Second SM (PMM) motor's constant J | Same as Hd118 |  |
| Hd230 | Second SM (PMM) minimum frequency | Same as Hd130 | 8 |
| Hd231 | Second SM (PMM) no-load current | Same as Hd131 | 10 |
| Hd232 | Second SM (PMM) start method selection | Same as Hd132 | 00 |
| Hd233 | Second SM (PMM) initial position estimation zero-V stand-by times | Same as Hd133 |  |
| Hd234 | Second SM (PMM) initial position estimation detection stand-by times | Same as Hd134 | 10 |
| Hd235 | Second SM (PMM) initial position estimation detection times | Same as Hd135 | 30 |
| Hd236 | Second SM (PMM) initial position estimation voltage gain | Same as Hd136 | 100 |
| Hd237 | Second initial position estimation magnetic-pole position offset | Same as Hd137 | 0 |

Note: 1. Varies depending on inverter models and settings of duty rating.
2. $\mathrm{Hd}-41$ to $\mathrm{Hd}-58$ are reserved parameters.

Parameter mode (code o)

| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| oA-10 | Operation selection when option error occurs (slot 1) | 00 (Error)/01 (Continue operation) | 00 |
| oA-11 | Communication monitoring timer setting (slot1) | 0.00~100.00 (s) | 1.00 |
| oA-12 | Operation setting at the time of communication error (slot1) | 00 (Error)/01 (Trip after deceleration stop)/02 (Ignore) 03 (Free run)/04 (Deceleration stop) | 01 |
| oA-13 | Selection of operation command behavior at start (slot 1) | 00 (Operation command disabled)/01 (Operation command enabled) | 00 |
| OA-20 | Operation selection when option error occurs (slot 2) | 00 (Error)/01 (Continue operation) | 00 |
| oA-21 | Communication monitoring timer setting (slot 2) | 0.00~100.00 (s) | 1.00 |
| oA-22 | Operation setting at the time of communication error (slot 2) | 00 (Error)/01 (Trip after deceleration stop)/02 (Ignore)/03 (Free run) 04 (Deceleration stop) | 01 |
| oA-23 | Selection of operation command behavior at start (slot 2) | 00 (Operation command disabled)/01 (Operation command enabled) | 00 |
| oA-30 | Operation selection when option error occurs (slot 3) | 00 (Error)/01 (Continue operation) | 00 |
| oA-31 | Communication monitoring timer setting (slot 3) | 0.00~100.00 (s) | 1.00 |
| oA-32 | Operation setting at the time of communication error (slot 3) | 00 (Error)/01 (Trip after deceleration stop)/02 (Ignore)/03 (Free run) 04 (Deceleration stop) | 01 |
| oA-33 | Selection of operation command behavior at start (slot 3) | 00 (Operation command disabled)/01 (Operation command enabled) | 00 |
| ob-01 | Encoder constant set-up (option) | 32~65535 (pls) | 1024 |
| ob-02 | Encoder phase sequence selection (option) | 00 (Phase-A is leading)/01 (Phase-B is leading) | 00 |
| ob-03 | Motor gear ratio's numerator (option) | 1~10000 | 1 |
| ob-04 | Motor gear ratio's denominator (option) |  |  |
| ob-10 | Pulse string input SA/SB (option) detection target selection | 00 (Command)/01 (Pulse string position command) | 00 |
| ob-11 | Pulse string input (option) mode selection | 00 ( $90^{\circ}$ phase difference) <br> 01 (forward/reverse rotation command and rotation direction) <br> 02 (forward/reverse rotation pulse string) | 01 |
| ob-12 | Pulse string input (option) scale | 0.05~200.0 (kHz) | 25.00 |
| ob-13 | Pulse string input (option) filter time constant | 0.01~2.00 (s) | 0.10 |
| ob-14 | Pulse string input (option) bias size | -100.0~100.0 (\%) | 0.0 |
| ob-15 | Pulse string input (option) upper detection limit | 0, | 100.0 |
| ob-16 | Pulse string input (option) lower detection limit | 0.0~100.0 (\%) | 0.0 |


| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| oE-01 | [Ai4] terminal input filter time constant | 1~500 (ms) | 16 |
| oE-03 | [Ai4] terminal start amount |  | 0.00 |
| oE-04 | [Ai4] terminal end amount | 0.00~00.00 (\%) | 100.00 |
| oE-05 | [Ai4] terminal start ratio | 0.0~ [0E-06] (\%) | 0.0 |
| oE-06 | [Ai4] terminal end ratio | [oE-05]~100.0 (\%) | 100.0 |
| OE-07 | [Ai4] terminal start selection | 00 (Start amount [0E-03])/01 (0\%) | 01 |
| oE-11 | [Ai5] terminal input filter time constant | 1~500 (ms) | 16 |
| oE-13 | [Ai5] terminal start amount |  | 0.00 |
| oE-14 | [Ai5] terminal end amount | 0.00~100.00 (\%) | 100.00 |
| oE-15 | [Ai5] terminal start ratio | 0.0~ [oE-16] (\%) | 0.0 |
| OE-16 | [Ai5] terminal end ratio | [0E-15]~100.0 (\%) | 100.0 |
| oE-17 | [Ai5] terminal start selection | 00 (Start amount [oE-13])/01 (0\%) | 01 |
| oE-21 | [Ai6] terminal input filter time constant | 1~500 (ms) | 16 |
| oE-23 | [Ai6] terminal start amount |  | -100.00 |
| oE-24 | [Ai6] terminal end amount | -100.00~100.00 (\%) | 100.00 |
| OE-25 | [Ai6] terminal start ratio | -100.0~ [oE-26] (\%) | -100.0 |
| OE-26 | [Ai6] terminal end ratio | [oE-25]~100.0 (\%) | 100.0 |
| oE-28 | [Ai4] voltage/current bias adjustment | -100.00~100.00 (\%) | 0.00 |
| oE-29 | [Ai4] voltage adjustment gain | 0.00~200.00 (\%) | 100.00 |
| oE-30 | [Ai5] voltage/current bias adjustment | -100.00~100.00 (\%) | 0.00 |
| OE-31 | [Ai5] voltage adjustment gain | 0.00~200.00 (\%) | 100.00 |
| oE-32 | [Ai6] voltage bias adjustment | -100.00~100.00 (\%) | 0.00 |
| OE-33 | [Ai6] voltage adjustment gain | 0.00~200.00 (\%) | 100.00 |
| oE-35 | Window comparator [Ai4] upper limit level | 0~100 (\%) | 100 |
| oE-36 | Window comparator [Ai4] lower limit level | 0~00 (\%) | 0 |
| oE-37 | Window comparator [Ai4] hysteresis range | 0~10 (\%) | 0 |
| oE-38 | Window comparator [Ai5] upper limit level | 0~100 (\%) | 100 |
| oE-39 | Window comparator [Ai5] lower limit level | 0~100 (\%) | 0 |
| oE-40 | Window comparator [Ai5] hysteresis range | 0~10 (\%) | 0 |
| oE-41 | Window comparator [Ai6] upper limit level | 0 (\%) | 100 |
| oE-42 | Window comparator [Ai6] lower limit level | -100~00 (\%) | -100 |
| oE-43 | Window comparator [Ai6] hysteresis range | 0~10 (\%) | 0 |
| oE-44 | [Ai4] operation level at disconnection | -100~100 (\%) | 0 |
| oE-45 | [Ai4] operation level selection at disconnection | 00 (Disabled) <br> 01 (Enabled: out of range) <br> 02 (Enabled: within the range) | 00 |
| oE-46 | [Ai5] operation level at disconnection | 0~100 (\%) | 0 |
| oE-47 | [Ai5] operation level selection at disconnection | 00 (Disabled) <br> 01 (Enabled: out of range) <br> 02 (Enabled: within the range) | 00 |
| oE-48 | [Ai6] operation level at disconnection | 0~100 (\%) | 0 |
| oE-49 | [Ai6] operation level selection at disconnection | 00 (Disabled) <br> 01 (Enabled: out of range) <br> 02 (Enabled: within the range) | 00 |
| oE-50 | [Ao3] terminal output selection |  |  |
| oE-51 | [Ao4] terminal output selection | See the List of output monitor functions | dA-01 |
| OE-52 | [Ao5] terminal output selection |  |  |
| oE-56 | [A03] output filter time constant | 1~500 (ms) | 100 |
| oE-57 | [A03] output data type selection | 00 (absolute value) 01 (with sign) | 00 |
| OE-58 | [A03] bias adjustment (voltage/current) | -100.0~100.0 (\%) | 0.0 |
| oE-59 | [Ao3] gain adjustment (voltage/current) | -1000.0~1000.0 (\%) |  |
| oE-60 | [A03] output level in the adjustment mode | -100.0~100.0 (\%) | 100.0 |
| oE-61 | [Ao4] output filter time constant | 1~500 (ms) | 100 |
| oE-62 | [Ao4] output data type selection | 00 (absolute value) 01 (with sign) | 00 |
| oE-63 | [A04] bias adjustment (voltage/current) | -100.0~100.0 (\%) | 0.0 |
| oE-64 | [Ao4] gain adjustment (voltage/current) | -1000.0~1000.0 (\%) |  |
| oE-65 | [Ao4] output level in the adjustment mode | -100.0~100.0 (\%) | 100.0 |
| oE-66 | [A05] output filter time constant | 1~500(ms) | 100 |
| oE-67 | [Ao5] output data type selection | 00 (absolute value) 01 (with sign) | 00 |
| oE-68 | [Ao5] bias adjustment (voltage) | -100.0~100.0 (\%) | 0.0 |
| oE-69 | [Ao5] gain adjustment (voltage) | -1000.0~1000.0 (\%) | 100.0 |
| oE-70 | [A05] output level in the adjustment mode | -100.0~100.0 (\%) | 100.0 |


| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| oH-01 | IP address selection (P1-EN) | 00 (Gr.1)/01 (Gr.2) | 00 |
| oH-02 | Transmission speed (port 1) (P1-EN) | 00 (Auto negotiation)/01 (100M: full duplex)/02 (100M: half duplex) 03 (10M: full duplex)/04 (10M: half duplex) |  |
| OH-03 | Transmission speed (port 2) (P1-EN) |  |  |
| oH-04 | Ethernet communication timeout (P1-EN) | 1~65535 (×10ms) | 3000 |
| oh-05 | Modbus TCP port number (IPv4) | 502, 1024~65535 |  |
| OH-06 | Modbus TCP port number (IPv6) | 502,1024~6553 |  |
| oH-20 | Profibus Nobe address | 0~125 | 0 |
| OH-21 | Profibus Clear Mode selection | 00 (Clear)/01 (Value retained the last time) | 00 |
| OH-22 | Profibus Map selection | 00 (PPO)/01 (Comvertional)/02 (FlexibleMode) |  |
| OH-23 | Selection of setting from the Profibus master | 00 (Allowed)/01 (Not allowed) |  |
| oH-24 | Selection of setpoint telegram/Actual value telegram Gr | 00 (Gr.A)/01 (Gr.B)/02 (Gr.C) |  |
| oH-30 | IP address selection (P1-PN) | 00 (Gr.1)/01 (Gr.2) |  |
| oH-31 | Transmission speed (port 1) (P1-PN) | 00 (Auto negotiation)/01 (100M: full duplex)/02 (100M: half duplex) 03 (10M: full duplex)/04 (10M: half duplex) |  |
| oH-32 | Transmission speed (port 2) (P1-PN) |  |  |
| OH-33 | Ethernet communication timeout (P1-PN) | 1~65535 (×10ms) | 3000 |
| OH-34 | Selection of setpoint telegram/Actual value telegram Gr | 00 (Gr.A)/01 (Gr.B)/02 (Gr.C) | 502 |
| oJ-01 to 10 | Gr.A flexible command registration writing register 1 to 10 | 0000~FFFF | 0000 |
| oJ-11 to 20 | Gr.A flexible command registration reading register 1 to 10 |  |  |
| oJ-21 to 30 | Gr.B flexible command registration writing register 1 to 10 |  |  |
| oJ-31 to 40 | Gr.B flexible command registration reading register 1 to 10 |  |  |
| oJ-41 to 50 | Gr.C flexible command registration writing register 1 |  |  |
| oJ-51 to 60 | Gr.C flexible command registration reading register 1 |  |  |
| oL-01 | Gr. 1 IPv4 IP address (1) | 0~255 | 192 |
| ol-02 | Gr. 1 IPv4 IP address (2) |  | 168 |
| oL-03 | Gr. 1 IPv4 IP address (3) |  | 0 |
| oL-04 | Gr. 1 Pv4 IP address (4) |  | 2 |
| oL-05 | Gr. 1 IPv4 subnet mask (1) |  | 255 |
| oL-06 | Gr. 1 IPv4 subnet mask (2) |  | 255 |
| oL-07 | Gr. 1 IPv4 subnet mask (3) |  | 255 |
| oL-08 | Gr. 1 IPv4 subnet mask (4) |  | 0 |
| oL-09 | Gr. 1 IPv4 default gateway (1) |  | 192 |
| oL-10 | Gr. 1 IPv4 default gateway (2) |  | 168 |
| oL-11 | Gr. 1 Pv4 default gateway (3) |  | 0 |
| oL-12 | Gr. 1 Pv4 default gateway (4) |  | 1 |
| oL-20 to 27 | Gr. 1 IPv6 IP address (1) to (8) | 0000~FFFF | 0000 |
| ol-28 | Gr. 1 IPv6 subnet prefix | 0~127 | 64 |
| oL-29 to 36 | Gr. 1 IPv6 default gateway (1) to (8) | 0000~FFFF | 0000 |
| ol-40 to 51 | Gr. 2 IPv4 | Same as ol-01 to ol-12 | - |
| ol-60 to 67 | Gr. 1 IPv6 IP address (1) to (8) | 0000~FFFF | 0000 |
| oL-68 | Gr. 2 IPv6 subnet prefix | 0~127 | 64 |
| oL-69 to 76 | Gr. 2 IPv6 default gateway (1) to (8) | 0000~FFFF | 0000 |

## Parameter mode (code P)

| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| PA-01 | Forced operation mode selection | 00 (Disabled)/01 (Enabled) | 00 |
| PA-02 | Forced operation frequency setting | 0.00~590.00 (Hz) | 0.00 |
| PA-03 | Forced operation rotation direction command | 00 (Normal rotation)/01 (Reverse rotation) | 00 |
| PA-04 | Commercial power supply bypass function selection | 00 (Disabled)/01 (Enabled) | 00 |
| PA-05 | Bypass function delay time | 0.0~1000.0 (s) | 5.0 |
| PA-20 | Simulation mode selection | 00 (Disabled)/01 (Enabled) | 00 |
| PA-21 | Selection of error code for alarm test | 000~255 | 000 |
| PA-22 | Output current monitor optional output selection | 00 (Disabled)/01 (Enabled: parameter setting [PA-23]) <br> 02 (Enabled: set from [VRF])/03 (Enabled: set from [IRF]) <br> 04 (Enabled: set from [VF2])/05 (Enabled: set from [Ai4]) <br> 06 (Enabled: set from [Ai5])/07 (Enabled: set from [Ai6]) | 01 |
| PA-23 | Output current monitor optional setting value | 0.0 to $3.0 \times$ Inverter rated current (A) | 0.0 |
| PA-24 | P-N voltage monitor optional output selection | 00 (Disabled)/01 (Enabled: parameter setting [PA-25]) <br> 02 (Enabled: set from [VRF])/03 (Enabled: set from [IRF]) <br> 04 (Enabled: set from [VF2])/05 (Enabled: set from [Ai4]) <br> 06 (Enabled: set from [Ai5])/07 (Enabled: set from [Ai6]) | 01 |
| PA-25 | P-N voltage monitor optional setting value | 200 V class: 0.0 to 450.0 (Vdc) <br> 400 V class: 0.0 to 900.0 (Vdc) | $\begin{aligned} & \hline 270.0 \\ & 540.0 \end{aligned}$ |
| PA-26 | Output voltage monitor optional output selection | 00 (Disabled)/01 (Enabled: parameter setting [PA-27]) 02 (Enabled: set from [VRF])/03 (Enabled: set from [IRF]) 04 (Enabled: set from [VF2])/05 (Enabled: set from [Ai4]) 06 (Enabled: set from [Ai5])/07 (Enabled: set from [Ai6]) | 01 |
| PA-27 | Output voltage monitor optional setting value | 200 V class: $0.0-300.0(\mathrm{~V})$ 400 V class: $0.0-600.0(\mathrm{~V})$ | 0.0 |
| PA-28 | Output torque monitor optional output selection | 00 (Disabled)/01 (Enabled: parameter setting [PA-29]) <br> 02 (Enabled: set from [VRF])/03 (Enabled: set from [IRF]) <br> 04 (Enabled: set from [VF2])/05 (Enabled: set from [Ai4]) <br> 06 (Enabled: set from [Ai5])/07 (Enabled: set from [Ai6]) | 01 |
| PA-29 | Output torque monitor optional setting value | -500.0~+500.0 (\%) | 0.0 |
| PA-30 | Frequency adjustment optional output selection | 00 (Disabled)/01 (Enabled: parameter setting [PA-31]) <br> 02 (Enabled: set from [VRF])/03 (Enabled: set from [IRF]) <br> 04 (Enabled: set from [VF2])/05 (Enabled: set from [Ai4]) <br> 06 (Enabled: set from [Ai5])/07 (Enabled: set from [Ai6]) | 01 |
| PA-31 | Frequency matching optional setting value | $0.0 \sim 590.00$ (Hz) | 0.00 |

Parameter mode (code U)

| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| UA-01 | Password input for display selection |  |  |
| UA-02 | Soft-lock password input | 0000~FFFF | 0000 |
| UA-10 | Display selection | 00 (Full display)/01 (By function)/02 (User setting) 03 (Compare display)/04 (Only monitor display) | 00 |
| UA-12 | Clearing of integrated input power | 00 (Disabled)/01 (Clear) | 00 |
| UA-13 | Integrated input power display gain | 1~1000 | 1 |
| UA-14 | Clearing of integrated output power | 00 (Disabled)/01 (Clear) | 00 |
| UA-15 | Integrated output power display gain | 1~1000 | 1 |
| UA-16 | Soft-lock selection | 00 ([SFT] terminal)/01 (Always enabled) | 00 |
| UA-17 | Soft-lock target selection | 00 (All data cannot be changed) <br> 01 (Data other than set frequency cannot be changed) | 00 |
| UA-18 | Data R/W selection | 00 (R/W enabled)/01 (R/W disabled) | 00 |
| UA-19 | Battery level warning selection | 00 (Disabled)/01 (Warning)/02 (Error) | 00 |
| UA-20 | Operation at disconnection of operator keypad | 00 (Error)/01 (Error after deceleration stop)/02 (Ignore) 03 (Free run)/04 (Deceleration stop) | 02 |
| UA-21 | Selection of second setting parameter display | 00 (Not display) | 00 |
| UA-22 | Selection of option parameter display | 01 (Display) | 00 |
| UA-30 | Selection of user parameter automatic setting | 00 (Disabled)/01 (Enabled) | 00 |
| UA-31 to 62 | User parameter 1 to 62 selection | no/***** (select a parameter) | no |
| Ub-01 | Selection of factory default initialization | 00 (Disabled)/01 (Trip history)/02 (Parameter initialization) <br> 03 (Trip history + parameters)/04 (Reserved)/05 (Other than terminal function) <br> 06 (Other than communication function) <br> 07 (Other than terminal\&communication functions)/08 (Reserved) | 00 |
| Ub-02 | Selection of initial values | 00 (Mode 0)/01 (Mode 1)/02 (Mode 2)/03 (Mode 3) | 00 |
| Ub-03 | Duty type selection | 00 (VLD)/01 (LD)/02 (ND) | 02 |
| Ub-05 | Initialization start selection | 00 (Disabled)/01 (Start initialization) | 00 |


| Code | Name | Data range | Initial value |
| :---: | :---: | :---: | :---: |
| Ud-01 | Trace function selection | 00 (Disabled)/01 (Enabled) | 00 |
| Ud-02 | Trace start | 00 (Stop)/01 (Start) | 00 |
| Ud-03 | Selection of the number of trace data sets |  |  |
| Ud-04 | Selection of the number of trace signals | 0~8 | 1 |
| Ud-10 to17 | Selection of trace data 0 to 7 | <List of output monitor functions>. | dA-01 |
| Ud-20 | Trace signal 0 I/O selection | 00 (Input: [Ud-21])/01 (Output: [Ud-22]) | 00 |
| Ud-21 | Trace signal 0 input terminal selection |  |  |
| Ud-22 | Trace signal 0 output terminal selection | <List of input terminal functions> | 001 |
| Ud-23 | Trace signal 1 I/O selection | 00 (Input:[Ud-24])/01 (Output: [Ud-25]) | 00 |
| Ud-24 | Trace signal 1 input terminal selection | <List of input terminal functions> |  |
| Ud-25 | Trace signal 1 output terminal selection | <Listof input terminal functions> | 001 |
| Ud-26 | Trace signal $21 / \mathrm{O}$ selection | 00 (Input: [Ud-27]/01 (Output: [Ud-28]) | 00 |
| Ud-27 | Trace signal 2 input terminal selection | <List of input terminal functions> | 001 |
| Ud-28 | Trace signal 2 output terminal selection | <List of inputterminalfunctions> |  |
| Ud-29 | Trace signal 3 I/O selection | 00 (Input: [Ud-30])/01 (Output: [Ud-31]) | 00 |
| Ud-30 | Trace signal 3 input terminal selection |  |  |
| Ud-31 | Trace signal 3 output terminal selection | <List of input terminal functions> | 001 |
| Ud-32 | Trace signal 4 //O selection | 00 (Input: [Ud-33])/01 (Output: [Ud-34]) | 00 |
| Ud-33 | Trace signal 4 input terminal selection |  | 001 |
| Ud-34 | Trace signal 4 output terminal selection | <List of input terminal functions> |  |
| Ud-35 | Trace signal $51 / \mathrm{O}$ selection | 00 (Input: [Ud-36])/01 (Output: [Ud-37]) | 00 |
| Ud-36 | Trace signal 5 input terminal selection |  |  |
| Ud-37 | Trace signal 5 output terminal selection | <List of input terminal functions> | 001 |
| Ud-38 | Trace signal $61 / \mathrm{O}$ selection | 00 (Input: [Ud-39])/01 (Output: [Ud-40]) | 00 |
| Ud-39 | Trace signal 6 input terminal selection | <List of input terminal functions> | 00 |
| Ud-40 | Trace signal 6 output terminal selection | <List of input terminalfunctions> | 001 |
| Ud-41 | Trace signal 7 I/O selection | 00 (Input: [Ud-42])/01 (Output: [Ud-43]) | 00 |
| Ud-42 | Trace signal 7 input terminal selection | <List of input terminal functions> |  |
| Ud-43 | Trace signal 7 output terminal selection | <List of input terminal functions> | 001 |
| Ud-50 | Selection of trace trigger 1 | 00 (Trip)/01 (Trace data 0)/02 (Trace data 1)/03 (Trace data 2)/04 (Trace data 3) 05 (Trade data 4)/06 (Trace data 5)/07 (Trace data 6)/08 (Trace data 7) 09 (Trace signal 0)/10 (Trace signal 1)/11 (Trace signal 2)/12 (Trace signal 3) <br> 13 (Trace signal 4)/14 (Trace signal 5)/15 (Trace signal 6)/16 (Trace signal 7) | 00 |
| Ud-51 | Selection of trigger 1 operation at trace data trigger | 00 (Operate when it is above the trigger level) <br> 01 (Operate when it is below the trigger level) | 00 |
| Ud-52 | Trigger 1 level at trace data trigger | 0~100 (\%) | 0 |
| Ud-53 | Selection of trigger 1 operation at trace signal trigger | 00 (Operate when the signal is ON) <br> 01 (Operate when the signal is OFF) | 00 |
| Ud-54 | Selection of trace trigger 2 | Same as Ud-50 | 00 |
| Ud-55 | Selection of trigger 2 operation at trace data trigger | 00 (Rising edge) <br> 01 (Falling edge) | 00 |
| Ud-56 | Trigger 2 level at trace data trigger | 0~100 (\%) | 0 |
| Ud-57 | Selection of trigger 2 operation at trace signal trigger | 00 (Operate when the signal is ON) <br> 01 (Operate when the signal is OFF) | 00 |
| Ud-58 | Trigger condition selection | 00 (When trigger 1 is satisfied)/01 (When trigger 2 is satisfied) <br> 02 (When trigger 1 or 2 is satisfied)/03 (When trigger 1 and 2 are satisfied) | 00 |
| Ud-59 | Trigger point setting | 0~100 (\%) | 0 |
| Ud-60 | Sampling time setting | $01(0.2 \mathrm{~ms}) / 02(0.5 \mathrm{~ms}) / 03(1 \mathrm{~ms}) / 04(2 \mathrm{~ms}) / 05(5 \mathrm{~ms}) / 06(10 \mathrm{~ms}) / 07(50 \mathrm{~ms})$ $08(100 \mathrm{~ms}) / 09(500 \mathrm{~ms}) / 10(1000 \mathrm{~ms})$ | 03 |

〈List of output monitor functions〉

| Monitor No． |  |
| :---: | :--- |
| dA－01 | Function |
| dA－02 | Output frequency monitor |
| dA－04 | Frequency command after calculation |
| dA－08 | Speed detection value monitor |
| dA－12 | Output frequency monitor（with sign） |
| dA－14 | Frequency upper limit monitor |
| dA－15 | Torque command monitor after calculation |
| dA－16 | Torque limit monitor |
| dA－17 | Output torque monitor |
| dA－18 | Output voltage monitor |
| dA－30 | Input power monitor |
| dA－34 | Output power monitor |
| dA－38 | Motor temperature monitor |
| dA－40 | DC voltage monitor |
| dA－41 | DBTR load factor monitor |
| dA－42 | Electronic thermal duty ratio monitor MTR |
| dA－43 | Electronic thermal duty ratio monitor CTL |
| dA－61 | Analog input［VRF］monitor |
| dA－62 | Analog input［IRF］monitor |
| dA－63 | Analog input［VF2］monitor |
| dA－64 | Analog input［Ai4］monitor |
| dA－65 | Analog input［Ai5］monitor |
| dA－66 | Analog input［Ai6］monitor |
| dA－70 | Pulse string input monitor main body |
| dA－71 | Pulse string input monitor option |
| db－30 | PID1 feedback data 1 monitor |
| db－34 | PID1 feedback data 2 monitor |
|  | PID1 feedback data 3 monitor |
|  |  |


| Monitor No． |  |
| :---: | :--- |
| $\mathrm{db}-36$ | PID2 feedback data monitor |
| $\mathrm{db}-38$ | PID3 feedback data monitor |
| $\mathrm{db}-40$ | PID4 feedback data monitor |
| $\mathrm{db}-42$ | PID1 target value monitor after calculation |
| $\mathrm{db}-44$ | PID1 feedback data |
| $\mathrm{db}-50$ | PID1 output monitor |
| $\mathrm{db}-51$ | PID1 deviation monitor |
| $\mathrm{db}-52$ | PID1 deviation 1 monitor |
| $\mathrm{db}-53$ | PID1 deviation 2 monitor |
| $\mathrm{db}-54$ | PID1 deviation 3 monitor |
| $\mathrm{db}-55$ | PID2 output monitor |
| $\mathrm{db}-56$ | PID2 deviation monitor |
| $\mathrm{db}-57$ | PID3 output monitor |
| $\mathrm{db}-58$ | PID3 deviation monitor |
| $\mathrm{db}-59$ | PID4 output monitor |
| $\mathrm{db}-60$ | PID4 deviation monitor |
| $\mathrm{db}-64$ | PID feed－forward monitor |
| $\mathrm{dC}-15$ | Cooling fin temperature monitor |
| FA－01 | Main speed command |
| FA－02 | Auxiliary speed command |
| FA－15 | Torque command monitor |
| FA－16 | Torque bias monitor |
| FA－30 | PID1 target value 1 |
| FA－32 | PID1 target value 2 |
| FA－34 | PID1 target value 3 |
| FA－36 | PID2 target value |
| FA－38 | PID3 target value |
| FA－40 | PID4 target value |
|  |  |
|  |  |

## 〈List of input terminal functions〉

| Function No． | Abbreviation | Function name |
| :---: | :---: | :---: |
| 000 | no | Without allocation |
| 001 | FR | Normal rotation |
| 002 | RR | Reverse rotation |
| 003 | DFL | Multistage speed 1 |
| 004 | DFM | Multistage speed 2 |
| 005 | DFH | Multistage speed 3 |
| 006 | DHH | Multistage speed 4 |
| 007 to 013 | SF1 to 7 | Multistage speed bit 1 to 7 |
| 014 | ADD | Addition of frequency |
| 015 | AUT | Switching of command |
| 016 | STA | 3 －wire starting up |
| 017 | STP | 3 －wire stopping |
| 018 | FS | 3 －wire normal and reverse |
| 019 | AHD | Retention of analog command |
| 020 | UP | Acceleration through remote operation |
| 021 | DWN | Deceleration through remote operation |
| 022 | UDC | Clearing of remote operation data |
| 023 | F－OP | Forced switching of command |
| 024 | SET | Second control |
| 028 | RST | Reset |
| 029 | JOG | Jogging |
| 030 | DB | Braking with external direct current |
| 031 | AD2 | 2－step acceleration／deceleration |
| 032 | MBS | Free－run stop |
| 033 | ES | External abnormality |
| 034 | USP | Prevention of power restoration restarting |
| 035 | CS | Commercial switch |
| 036 | SFT | Soft－lock |
| 037 | BOK | Brake check |
| 038 | OLR | Switching of stall prevention |
| 039 | KHC | Clearing of integrated input power |
| 040 | OKHC | Clearing of integrated output power |
| 041 | PID | PID1 disabled |
| 042 | PIDC | Resetting of PID1 integration |
| 043 | PID2 | PID2 disabled |
| 044 | PIDC2 | Resetting of PID2 integration |
| 045 | PID3 | PID3 disabled |
| 046 | PIDC3 | Resetting of PID3 integration |
| 047 | PID4 | PID4 disabled |
| 048 | PIDC4 | Resetting of PID4 integration |
| 051 | SVC1 | PID1 multistage target value 1 |
| 052 | SVC2 | PID1 multistage target value 2 |


| Function No． | Abbreviation | Function name |
| :---: | :---: | :---: |
| 053 | SVC3 | PID1 multistage target value 3 |
| 054 | SVC4 | PID1 multistage target value 4 |
| 055 | PRO | Switching of PID gain |
| 056 | PIO | Switching of PID output |
| 058 | SLEP | Satisfaction of SLEEP condition |
| 059 | WAKE | Satisfaction of WAKE condition |
| 060 | TL | Validation of torque limit |
| 061 | TRQ1 | Torque limit switchover 1 |
| 062 | TRQ2 | Torque limit switchover 2 |
| 063 | PPI | PPI control switch |
| 064 | CAS | Control gain switch |
| 066 | FOC | Auxiliary excitation |
| 067 | ATR | Validation of torque control |
| 068 | TBS | Validation of torque bias |
| 069 | ORT | Orientation |
| 071 | LAC | Cancellation of LAD |
| 072 | PCLR | Clearing of positional deviation |
| 073 | STAT | Permission to inputting of Pulse string position command |
| 074 | PUP | Addition of positional bias |
| 075 | PDN | Subtraction of positional bias |
| 076 | CP1 | Positional command selection 1 |
| 077 | CP2 | Positional command selection 2 |
| 078 | CP3 | Positional command selection 3 |
| 079 | CP4 | Positional command selection 4 |
| 080 | ORL | Origin limit signal |
| 081 | ORG | Return－to－origin start up signal |
| 082 | FOT | Stopping of normal rotation driving |
| 083 | ROT | Stopping of reverse rotation driving |
| 084 | SPD | Switching of speed position |
| 085 | PSET | Presetting of positional data |
| 097 | PCC | Clearing of pulse counter |
| 098 | ECOM | Starting up of EzCOM |
| 100 | HLD | Stopping of acceleration／deceleration |
| 101 | REN | Operation permission signal |
| 102 | DISP | Fixation of display |
| 103 | PLA | Pulse string input A |
| 104 | PLB | Pulse string input B |
| 105 | EMF | Emergency forced operation |
| 107 | COK | Contactor check signal |
| 108 | DTR | Data trace starting signal |
| 109 | PLZ | Pulse string input Z |
| 110 | TCH | Teaching signal |

〈List of output terminal functions〉

| Function No. | Abbreviation | Function name |
| :---: | :---: | :---: |
| 000 | no | Without allocation |
| 001 | DRV | During operation |
| 002 | UPF1 | When the constant speed is attained |
| 003 | UPF2 | Equal to or above the set frequency |
| 004 | UPF3 | Set frequency only |
| 005 | UPF4 | Equal to or above the set frequency 2 |
| 006 | UPF5 | Set frequency only 2 |
| 007 | IRDY | Operation ready completion |
| 008 | FRR | During normal rotation operation |
| 009 | RRR | During reverse rotation operation |
| 010 | FREF | Frequency command panel |
| 011 | REF | Operation command panel |
| 012 | SETM | Second control under selection |
| 016 | OPO | Optional output |
| 017 | AL | Alarm signal |
| 018 | MJA | Severe failure signal |
| 019 | OTQ | Excessive torque |
| 020 | IP | During instantaneous power failure |
| 021 | UV | Under insufficient voltage |
| 022 | TRQ | During torque limitation |
| 023 | IPS | During power failure deceleration |
| 024 | RNT | RUN time elapsed |
| 025 | ONT | Power ON time elapsed |
| 026 | THM | Electronic thermal warning |
| 027 | THC | Electronic thermal warning |
| 029 | WAC | Capacitor life advance notice |
| 030 | WAF | Fan life advance notice |
| 031 | FS | Operation command signal |
| 032 | OHF | Cooling fin heating advance notice |
| 033 | LOC | Low current signal |
| 034 | LOC2 | Low current signal 2 |
| 035 | OL | Overload advance notice |
| 036 | OL2 | Overload advance notice 2 |
| 037 | BRK | Brake release |
| 038 | BER | Brake abnormality |
| 039 | CON | Contactor control |


| Function No. | Abbreviation | Function name |
| :---: | :---: | :---: |
| 040 | ZS | 0 Hz detection signal |
| 041 | DSE | Excessive speed deviation |
| 042 | PDD | Excessive positional deviation |
| 043 | POK | Positioning completed |
| 044 | PCMP | Pulse count compare-match output |
| 045 | OD | PID excessive deviation |
| 046 | FBV | PID feedback comparison |
| 047 | OD2 | PID2 excessive deviation |
| 048 | FBV2 | PID2 feedback comparison |
| 049 | NDc | Communication disconnection |
| 050 | VRFDc | Analog disconnection VRF |
| 051 | IRFDc | Analog disconnection IRF |
| 052 | VF2Dc | Analog disconnection VF2 |
| 053 | Ai4Dc | Analog disconnection Ai4 |
| 054 | Ai5Dc | Analog disconnection Ai5 |
| 055 | Ai6Dc | Analog disconnection Ai6 |
| 056 | WCVRF | Window comparator VRF |
| 057 | WCIRF | Window comparator IRF |
| 058 | WCVF2 | Window comparator VF2 |
| 059 | WCAi4 | Window comparator Ai4 |
| 060 | WCAi5 | Window comparator Ai5 |
| 061 | WCAi6 | Window comparator Ai6 |
| 062 to 068 | LOG1 to 7 | Result of logical operation 1 to 7 |
| 076 | EMFC | Forced operation in process signal |
| 077 | EMBP | During-bypass-mode signal |
| 078 | WFT | Trace trigger stand-by signal |
| 079 | TRA | During-tracing signal |
| 080 | LBK | Operation panel battery insufficient |
| 081 | OVS | Excessive voltage of accepted power |
| 084 to 087 | AC0 to 3 | Alarm code bit 0 to 3 |
| 089 | OD3 | PID3 excessive deviation |
| 090 | FBV3 | PID3 feedback comparison |
| 091 | OD4 | PID4 excessive deviation |
| 092 | FBV4 | PID4 feedback comparison |
| 093 | SSE | PID soft start abnormality |



Note: Ground the noise filter according to the operation manual.
Incorrect grounding will lessen the effectiveness.

## Braking Unit and Braking Resistor

## Selection table for braking unit and braking resistor

## Selection table

| Voltage | Model inverter | Motor $\underset{(k W)}{\substack{\text { rating } \\(k)}}$ | Braking torque 100\% |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Operation rate : 4\%ED Braking time: 7s. or less |  |  |  |  | Operation rate : 10\%ED Braking time : 15 s . or less |  |  |  |  |
|  |  |  | Braking unit |  | Braking resistor Note:2 |  | Thermal Setting (A) | Braking unit |  | Braking resistor Note:2 |  | Thermal Setting (A) |
|  |  |  | Type | Min. $\Omega$ | Model No. | Qty. |  | Type | Min. $\Omega$ | Model No. | Qty. |  |
| $\begin{aligned} & \text { 200V } \\ & \text { Class } \end{aligned}$ | HF4322-5A5 | 5.5 | Note: 1 | - | Y135AA208(70ת 400W) Note:3 | 2P | 3.0 | Note: 1 | - | X435AC069(100 750W) | 25 | 5.5 |
|  | HF4322-7A5 | 7.5 |  | - | X435AC069(100 750W) | 25 | 5.5 |  | - | X435AC069(102 750W) | 25 | 5.5 |
|  | HF4322-011 | 11 |  | - | X435AC069(10л 750W) ${ }^{\text {Note: } 4}$ | 25 | 5.5 |  | - | X435AC094(7, 750W) ${ }^{\text {Note: }} 4$ | 35 | 6.7 |
|  | HF4322-015 | 15 |  | - | X435AC064(2.58 750W) | 35 | 11.0 |  | - | X435AC064(2.58 750W) | 45 | 11.0 |
|  | HF4324-022 | 18.5 |  | - | X435AC064(2.58 750W) | 35 | 11.0 |  | - | X435AC054(1.58 750W) | 55 | 14.1 |
|  | HF4322-022 | 22 |  | - | X435AC054(1.6ת 750W) | 4S | 13.7 |  | - | X435AC065(1.12 750W) | 65 | 16.5 |
|  | HF4322-030 | 30 | BRD-E3-30K | $4 \Omega$ | X435AC065(1.12 750W) | 4S | 16.5 | BRD-E3-30K | $4 \Omega$ | X435AC066(0.6ת 750W) | 85 | 21.4 |
|  | HF4322-037 | 37 | BRD-E3-55K | $2 \Omega$ | X435AC065(1.12 750W) | 45 | 16.5 | BRD-E3-55K | $2 \Omega$ | X435AC054(1.68 750W) | $5 \mathrm{~S} \times 2 \mathrm{P}$ | 27.4 |
|  | HF4322-045 | 45 |  | $2 \Omega$ | X435AC054(1.6ת 750W) | $35 \times 2 \mathrm{P}$ | 27.4 |  | $2 \Omega$ | X435AC065(1.12 750W) | $6 \mathrm{~S} \times 2 \mathrm{P}$ | 33.0 |
|  | HF4322-055 | 55 |  | $2 \Omega$ | X435AC054(1.6ת 750W) | $35 \times 2 \mathrm{P}$ | 27.4 |  | $2 \Omega$ | X435AC066(0.6ת 750W) | $8 \mathrm{~S} \times 2 \mathrm{P}$ | 44.7 |
| $\begin{aligned} & \text { 400V } \\ & \text { Class } \end{aligned}$ | HF4324-5A5 | 5.5 | Note: 1 | - | Y135AA205(2002 300W) | 2 P | 1.5 | Note: 1 | - | Y135AA209(250л 400W) | 3 P | 2.7 |
|  | HF4324-7A5 | 7.5 |  | - | Y135AA153(300 400W) | 25 | 2.3 |  | - | Y435AC058(2502 750W) | 25 | 3.5 |
|  | HF4324-011 | 11 |  | - | Y435AC058(300 750W) Note: 5 | 25 | 3.2 |  | - | Y435AC103(200 750W) | 35 | 3.9 |
|  | HF4324-015 | 15 |  | - | Y435AC069(10^ 750W) | 35 | 5.5 |  | - | Y435AC069(10^ 750W) | 4S | 5.5 |
|  | HF4324-022 | 18.5 |  | - | Y435AC069(102 750W) | 35 | 5.5 |  | - | Y435AC063(4.58 750W) | 65 | 8.2 |
|  | HF4324-022 | 22 |  | - | Y435AC090(68 750W) | 45 | 7.1 |  | - | Y435AC063(4.58 750W) | 65 | 8.2 |
|  | HF4324-030 | 30 |  | - | Y435AC063(4.58 750W) | 45 | 8.2 |  | - | Y435AC064(2.58 750W) | 85 | 11.0 |
|  | HF4324-037 | 37 |  | - | Y435AC063(4.58 750W) Note: ${ }^{\text {N }}$ | 45 | 8.2 |  | - | Y435AC054(1.68 750W) | 10 S | 13.7 |
|  | HF4324-045 | 45 | BRD-EZ3-30K | $10 \Omega$ | Y435AC064(2.5R 750W) | 55 | 11.0 | BRD-EZ3-30K | $10 \Omega$ | Y435AC065(1.12 750W) | 12 S | 16.5 |
|  | HF4324-055 | 55 |  | $10 \Omega$ | Y435AC094(7, 750W) | $35 \times 2 \mathrm{P}$ | 13.1 |  | $10 \Omega$ | Y435AC064(2.58 750W) | $85 \times 2 \mathrm{P}$ | 21.9 |

Note: 1. A braking unit is unnecessary because a braking circuit is built in the inverter. Use an external thermal relay for protection of the resistor from heating. When the thermal relay is activated, turn off the input power of the inverter. Set the usage rate with inverter parameters for protection from overloading.
2. $P$ in the column of the number of resistors means parallel connection and $S$ means series connection.
3. Braking torgue Approx. $70 \%$.
4. Braking torgue Approx. $80 \%$.
5. Braking torgue Approx. $90 \%$.

## Wire size (Terminal P/PR/N)

| Model of inverter | Wire |
| :---: | :---: |
| HF4322-5A5 | $3.5 \mathrm{~mm}^{2}$ or more |
| HF4322-7A5 | $5.5 \mathrm{~mm}^{2}$ or more |
| HF4322-011 | $8 \mathrm{~mm}^{2}$ or more |
| HF4322-015 | $14 \mathrm{~mm}^{2}$ or more |
| HF4322-022 | $22 \mathrm{~mm}^{2}$ or more |
| HF4324-5A5 | $2 \mathrm{~mm}^{2}$ or more |
| HF4324-7A5 |  |
| HF4324-011 | $2 \mathrm{~mm}^{2}$ or more |
| HF4324-015 | $5.5 \mathrm{~mm}^{2}$ or more |
| HF4324-022 | $8 \mathrm{~mm}^{2}$ or more |
| HF4324-030 <br> HF4324-037 | $14 \mathrm{~mm}^{2}$ or more |


| Model of braking unit | Resistor | Wire | $\begin{gathered} \text { SL1,SL2, } \\ \text { MA1,MA2 } \end{gathered}$ | Ground |
| :---: | :---: | :---: | :---: | :---: |
| BRD-E3-30K | $8 \Omega$ or more | $8 \mathrm{~mm}^{2}$ or more | $0.75 \mathrm{~mm}^{2}$ | $5.5 \mathrm{~mm}^{2}$or more |
|  | 5 to $7.9 \Omega$ | $14 \mathrm{~mm}^{2}$ or more |  |  |
|  | 4 to $4.9 \Omega$ | $22 \mathrm{~mm}^{2}$ or more |  |  |
| BRD-E3-55K | $4 \Omega$ or more | $22 \mathrm{~mm}^{2}$ or more |  |  |
|  | 3 to $3.9 \Omega$ | $38 \mathrm{~mm}^{2}$ or more |  |  |
|  | 2 to $2.9 \Omega$ | $60 \mathrm{~mm}^{2}$ or more |  |  |
| BRD-EZ3-30K | $17 \Omega$ or more | $8 \mathrm{~mm}^{2}$ or more |  |  |
|  | 13 to $16.9 \Omega$ | $14 \mathrm{~mm}^{2}$ or more |  |  |
|  | 10 to $12.9 \Omega$ | $22 \mathrm{~mm}^{2}$ or more |  |  |

Note: 1. The maximum temperature of the braking resistor is approx. $150^{\circ} \mathrm{C}$. Use heat-resistant wire. When installing the resistor pay close attention to the location with regards to clearance from heat sensitive elements.
2. The maximum wire length shall be 5 m . Twist the wire.
3. Improper connection of $\mathrm{P}, \mathrm{N}$, and PR will lead to failure of the inverter and braking unit. Make sure that the same terminal codes are connected.
4. The braking resistor may become hot during operation. Do not touch it directly with bare hands.

## Braking Unit and Braking Resistor

## Connection Drawing for Braking Unit and Braking Resister



Note: 1. Connect a thermal relay to braking resistor and when operating, please cut the power supply of the inverter off.
2. Connect an alarm output(AL1 and AL2) for overheating prevention of the braking unit and cut the power supply of the inverter off.
3. Use a twisted cable for the wiring of the braking resistor within the 5 m .
4. Use a twisted cable for wiring of MA1, MA2 And SL1,SL2.
5. Operation voltage level of the braking unit is setting by DIP switch. (The master and slave of the braking units)

| Setting for DIP Switch |  |  |  |  | Function Setting | Romarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 3 | 4 |  | Master Note: 6.Operation Voltage:: $663 \mathrm{~V}(725 \mathrm{~V})$ | Factory setting |
| OFF | OFF | ON | $\times$ |  |  |  |
| 1 | 2 | 3 | 4 |  | Master $\quad$ Note: 6.Operation Voltage: $345 \mathrm{~V}(689 \mathrm{~V})$ |  |
| ON | OFF | ON | $\times$ |  |  |  |
| 1 | 2 | 3 | 4 |  | Master Note: 6 . <br> Operation Voltage : 326V(653V) |  |
| ON | ON | ON | $\times$ |  |  |  |
| 1 | 2 | 3 | 4 |  | Slave | Operation voltage depends on setting of muster unit. |
| $\times$ | $\times$ | OFF | $\times$ |  |  |  |

Note: 6. Values shown here are too 400V class drives.

Operating rate \%ED


Operating rate \%ED $=\frac{\mathrm{t}_{\mathrm{B}}}{\mathrm{t}_{\mathrm{C}}} \times 100$
$\mathrm{t}_{\mathrm{B}}=$ Braking time $(\mathrm{s})$
$\mathrm{t} \mathrm{c}=$ Cycle time ( s )

## Outline Drawing of Braking Unit



BRD-E3-30K


## Outline Drawing of Braking Unit and Braking Resistor

BRD-E3-55K


Note: Do not use terminal No. 1 and 2.
TM2 terminal width 33 , M10 thread


TM3 terminal width 7.5, M3 thread

$$
\begin{array}{l|l|}
\hline \mathrm{AL} 2 & \mathrm{AL} 1 \\
\hline
\end{array}
$$

## Weight:6kg

## Braking Resisitor

750W


300W


400W


Note: When mounting the braking resistor, keep at least a 50 mm clearance around the resistor.
(A) $\stackrel{50 \mathrm{~mm}}{\longleftrightarrow}$ (B)

## Peripheral Equipment

## [Installation]

Unit: mm
When the inverter installation conditions are as follows, install an AC reactor on the primary side:
(1) The capacity of the power transformer exceeds 500 kV .
(2) The capacity of the power transformer exceeds 30 times the inverter capacity. AC current with a large peak value flows through the primary side of the inverter. This peak current increases in proportion to the capacity of the power transformer, leading to failure of the converter section in some cases. For prevention of such failure, an AC reactor must be installed. Especially in the case of a 400 V class power supply, care must be exercised because operation with a large capacity transformer is common.
(3) Sudden change in supply voltage is expected.
(Example) When the phase advancing capacitor is changed over (charge/release) on the high voltage side.
(4) Large-capacity thyristor Leonard equipment or other phase control equipment is installed on the same power supply system as the inverter.
(5) The unbalance in the supply voltage is large
(6) A phase advancing capacitor is installed in the same power supply system as the inverter.
(7) Power factor improvement is necessary. Power factor can be improved by using AC or DC reactors on the inverter input side.
(8) Harmonic suppression is necessary.

## AC Reactor (Input side)



Fig. 1


Fig. 4


Fig. 2



Fig. 3


Fig. 6 Connection

Fig. 5

|  | Applicable rating (kW) | Specifications |  | Model No. Y220CA | W | D1 | D2 | H1 | H2 | A | B | G | T | Weight (kg) | $\begin{gathered} \text { Insulation } \\ \text { class } \end{gathered}$ | Figure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Current (A) | $\mathrm{L}(\mathrm{mH})$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 5.5 | 24 | 0.5 | 058 | 146 | 35 | 35 | 147 | 180 | 80 | 50 | 5 | M5 | 3.9 | F | 1 |
|  | 7.5 | 33 | 0.4 | 059 | 150 | 35 | 35 | 150 | 185 | 80 | 50 | 5 | M6 | 4.4 | F |  |
|  | 11 | 47 | 0.3 | 060 | 150 | 40 | 35 | 150 | 185 | 80 | 55 | 5 | M6 | 5.4 | F |  |
|  | 15 | 63 | 0.2 | 061 | 175 | 40 | 40 | 170 | 215 | 80 | 65 | 6 | M6 | 7.2 | F |  |
|  | 22 | 92 | 0.15 | 063 | 185 | 45 | 40 | 172 | 220 | 80 | 65 | 6 | M8 | 8.6 | F |  |
|  | 30 | 130 | 0.1 | 064 | 190 | 55 | 48 | 173 | 230 | 80 | 80 | 6 | M10 | 10.5 | F |  |
|  | 37 | 155 | 0.08 | 065 | 211 | 130 | 50 | 200 | - | 90 | 85 | 7 | M10 | 13.0 | F | 2 |
|  | 45 | 190 | 0.07 | 066 | 220 | 140 | 60 | 200 | 225 | 90 | 100 | 7 | M10 | 16.0 | F |  |
|  | 55 | 220 | 0.06 | 067 | 220 | 147 | 60 | 200 | 225 | 90 | 100 | 7 | M12 | 19.0 | F | 4 |


|  | Applicablerating (kW) | Specifications |  | Model No. Y220CA | W | D1 | D2 | H1 | H2 | A | B | G | T | Weight (kg) | Insulation class | Figure |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Current (A) | $\mathrm{L}(\mathrm{mH})$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 5.5 | 13 | 2.0 | 085 | 153 | 35 | 35 | 145 | 175 | 80 | 50 | 5 | M4 | 4.2 | B |  |
|  | 7.5 | 17 | 1.5 | 086 | 162 | 37 | 35 | 145 | 175 | 80 | 50 | 5 | M5 | 4.4 | B |  |
|  | 11 | 25 | 1.0 | 087 | 150 | 40 | 35 | 149 | 180 | 80 | 55 | 5 | M5 | 5.5 | F |  |
|  | 15 | 33 | 0.7 | 088 | 173 | 42 | 42 | 169 | 210 | 80 | 65 | 6 | M6 | 6.3 | F | 1 |
|  | 22 | 48 | 0.5 | 090 | 175 | 56 | 48 | 172 | 215 | 80 | 80 | 6 | M6 | 9.0 | F |  |
|  | 30 | 66 | 0.4 | 091 | 183 | 56 | 50 | 174 | 215 | 80 | 80 | 6 | M6 | 11.0 | F |  |
|  | 37 | 80 | 0.3 | 092 | 183 | 65 | 55 | 173 | 220 | 80 | 95 | 6 | M8 | 12.0 | F |  |
|  | 45 | 100 | 0.25 | 093 | 220 | 56 | 50 | 205 | 250 | 90 | 85 | 7 | M8 | 14.0 | F | 3 |
|  | 55 | 120 | 0.21 | 094 | 220 | 78 | 60 | 203 | 260 | 90 | 100 | 7 | M10 | 17.0 | F | 5 |

## DC Reactor

- Remove the shorting bar from the reactor connection terminal of the inverter, and connect the DC reactor before use.
- Determine the place of installation so that the wiring distance from the inverter will be as short as possible.
- As with any harmonic suppression techniques, using the DC reactor in combination with AC reactor will improve overall noise suppression.
- When installing in a location with substantial vibration, use vibration absorbing mounts or a stabilizer to dampen vibration to the reactor.


|  | Applicablerating(kW) | Specifications |  | Model No. Y220DA | Dimension (mm) |  |  |  |  |  |  |  |  | N | T | Weight (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Current (A) | $\mathrm{L}(\mathrm{mH})$ |  | A | a | B | b | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ | W | F | G |  |  |  |
|  | 5.5 | 28.0 | 1.47 | 038 | 90 | 60 | 62 | 52 | 140 | 170 | 75 | - | - | dia. 5 | M5 | 2.4 |
|  | 7.5 | 38.0 | 1.11 | 039 | 100 | 80 | 95 | 80 | 140 | 170 | 95 | 5.5 | 7 | - | M5 | 3.5 |
|  | 11 | 55.0 | 0.79 | 040 | 100 | 80 | 95 | 80 | 140 | 175 | 100 | 5.5 | 7 | - | M6 | 4.1 |
|  | 15 | 75.0 | 0.59 | 041 | 125 | 105 | 105 | 80 | 142 | 175 | 120 | 5.5 | 7 | - | M6 | 5.3 |
|  | 22 | 110.0 | 0.40 | 043 | 140 | 120 | 110 | 90 | 150 | 205 | 135 | 6.5 | 9 | - | M8 | 7.5 |
|  | 30 | 150.0 | 0.30 | 044 | 150 | 120 | 120 | 100 | 150 | 215 | 145 | 6.5 | 9 | - | M8 | 9.4 |
|  | 37 | 190.0 | 0.25 | 045 | 160 | 130 | 135 | 115 | 170 | 240 | 170 | 6.5 | 9 | - | M10 | 12.3 |
|  | 45 | 230.0 | 0.20 | 046 | 170 | 130 | 135 | 115 | 173 | 255 | 170 | 6.5 | 9 | - | M10 | 13.3 |
|  | 55 | 280.0 | 0.17 | 047 | 180 | 150 | 145 | 120 | 190 | 270 | 170 | - | - | dia. 8 | M12 | 15.9 |


|  | Applicable <br> rating <br> (kW) | Specifications |  | Model No. Y220CA | Dimension (mm) |  |  |  |  |  |  |  |  | N | T | Weight (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Current (A) | $\mathrm{L}(\mathrm{mH})$ |  | A | a | B | b | $\mathrm{H}_{1}$ | $\mathrm{H}_{2}$ | W | F | G |  |  |  |
|  | 5.5 | 14.0 | 5.87 | 008 | 90 | 60 | 62 | 52 | 140 | 165 | 75 | - | - | dia. 5 | M5 | 1.5 |
|  | 7.5 | 19.0 | 4.46 | 009 | 100 | 80 | 95 | 80 | 140 | 165 | 95 | 5.5 | 7 | - | M5 | 3.5 |
|  | 11 | 27.5 | 3.13 | 010 | 100 | 80 | 95 | 80 | 140 | 165 | 100 | 5.5 | 7 | - | M5 | 3.9 |
|  | 15 | 37.5 | 2.35 | 011 | 125 | 105 | 105 | 80 | 142 | 175 | 120 | 5.5 | 7 | - | M6 | 5.3 |
|  | 22 | 55.0 | 1.60 | 013 | 140 | 120 | 110 | 90 | 150 | 185 | 135 | 6.5 | 9 | - | M6 | 7.3 |
|  | 30 | 75.0 | 1.22 | 014 | 150 | 120 | 120 | 100 | 150 | 205 | 145 | 6.5 | 9 | - | M8 | 9.2 |
|  | 37 | 92.5 | 0.99 | 015 | 160 | 130 | 135 | 115 | 170 | 225 | 170 | 6.5 | 9 | - | M8 | 12.0 |
|  | 45 | 113.0 | 0.81 | 016 | 170 | 130 | 135 | 115 | 170 | 230 | 170 | 6.5 | 9 | - | M8 | 13.0 |
|  | 55 | 138.0 | 0.66 | 017 | 180 | 150 | 145 | 120 | 170 | 255 | 170 | - | - | dia. 8 | M8 | 15.3 |

## Peripheral Equipment



## AC Ammeter: ACF-12NB

The current transformer (CT) directly detects the current of the secondary side of the inverter.


Table of combination of AC ammeter (ACF-12NB) and current transformer (CT)

| Motor capacity (kW) | 200V class |  |  |  |  | 400V class |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Model No. | Meter |  | CT | Number of primary through holes | Model No. | Meter |  | CT | Number of primary through holes |
|  |  | Rated current [A] | Max. scale [A] | Type |  |  | Rated current [A] | Max. scale [A] | Type |  |
| 5.5 | X525AA042 | 5 | 50 | COM-15-26 50/5A | 3 | CT006AW | 5 | 20 | COMA-15A 20/5A | - |
| 7.5 | X525AA042 | 5 | 50 | COM-15-26 50/5A | 3 | CT007AW | 5 | 30 | COMA-15A 30/5A | - |
| 11 | X525AA043 | 5 | 75 | COM-15-26 75/5A | 2 | X525AA042 | 5 | 50 | COM-15-26 50/5A | 3 |
| 15 | X525AA116 | 5 | 100 | COM-15-30 100/5A | 2 | X525AA042 | 5 | 50 | COM-15-26 50/5A | 3 |
| 22 | X525AA044 | 5 | 150 | COM-15-26 150/5A | 1 | X525AA043 | 5 | 75 | COM-15-26 75/5A | 2 |
| 30 | X525AA045 | 5 | 200 | COM-15-30 200/5A | 1 | X525AA116 | 5 | 100 | COM-15-30 100/5A | 2 |
| 37 | X525AA046 | 5 | 250 | COM-15-30 250/5A | 1 | X525AA044 | 5 | 150 | COM-15-26 150/5A | 1 |
| 45 | X525AA047 | 5 | 300 | COM-15-30 300/5A | 1 | X525AA044 | 5 | 150 | COM-15-26 150/5A | 1 |
| 55 | X525AA121 | 5 | 400 | COM-15-30 400/5A | 1 | X525AA045 | 5 | 200 | COM-15-30 200/5A | 1 |

[^0]
## - Noise filter

Install input/output side filters in order to lower the noise level from the inverter and protect peripheral equipment from the adverse effects of noise. The standard input-side filters are the noise filter, zero-phase reactor,and capacitive (XY) filter, while the standard output-side filter is the zero-phase reactor.

- Noise filter : Substantially attenuates noise from the inverter.
- Zero-phase reactor : Lowers the level of noise transmitted from the power supply side or output side
- Capacitive filter : Lowers the level of noise in the AM radio frequency band.


## 1. Zero-phase reactor

Model No.X480AC192, Type: RC9129
[Method of connection]


Weight: 1.38 kg
(1) It can be used on both inverter input (power supply) side and output (motor) side.
(2) Wind the three wires of respective phases on the input or output side more than three times (4 turns) in the same direction. When winding wires more than three times (4 turns) is impossible because the wire is too thick, install two or more zerophase reactors side by side to reduce the number of turns.
(3) Make the gap between the cable and core as small as possible.

| Wire size ${ }^{\text {Note: }}$ | $14 \mathrm{~mm}^{2}$ or less | $14-30 \mathrm{~mm}^{2}$ | $22 \mathrm{~mm}^{2}-$ |
| :---: | :---: | :---: | :---: |
| Winding turns | 3 times (4T) | Once (2T) | Through (1T) |
| Qty | 1 pc | 2 pcs | 4 pcs |
| Winding method |  |  |  |

Note: The size of wire differs according to the kind of wire (flexblty).

## 2. Noise filter

Contact our agency for the output side noise filter, and filters (installed on the output side) that conform to various standards (VCCI, FCC, and VDE).

List of noise filters

| Applicable motor (kW) | Model No. | 200V input side | Weight | Fig. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Type | (kg) |  |
| 5.5 | X480AC291 | NF3030A-VZ | 0.7 | Fig. 1 |
| 7.5 | X480AC292 | NF3040A-VZ | 1.3 |  |
| 11 | X480AC293 | NF3080A-RQ2 | 3.6 | Fig. 2 |
| 15 |  |  |  |  |
| 22 | X480AC294 | NF3150A-RQ2 | 9 |  |
| 30, 37 | X480AC295 | NF3200A-RQ2 | 16 | Fig. 3 |
| 45, 55 | X480AC311 | NF3250A-RQ2 |  |  |

Note: Ground the noise filter with its own ground connection

| Applicable motor (kW) | Model No. | 400V input side | Weight (kg) | Fig. |
| :---: | :---: | :---: | :---: | :---: |
|  |  | Type |  |  |
| 5.5 | X480AC297 | NF3020C-VZ | 0.5 | Fig. 1 |
| 7.5 |  |  |  |  |
| 11 | X480AC298 | NF3030C-VZ | 0.7 |  |
| 15 | X480AC299 | NF3040C-VZ | 1.3 |  |
| 22 | X480AC300 | NF3080C-RQ2 | 3.6 | Fig. 2 |
| 30 |  |  |  |  |
| 37 | X480AC301 | NF3100C-RQ2 | 4.6 |  |
| 45,55 | X480AC303 | NF3150C-RQ2 | 9 |  |

## Peripheral Equipment

## Dimensional Drawing of Noise Filter

Fig. 1


| Model No. | Type | A | B | C | D | E | F | G | H | J | K | L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X480AC291 | NF3030A-VZ | 145 | 135 | 125 | 70 | 50 | 42 | 1.0 |  |  | M4 |  |
| X480AC292 | NF3040A-VZ | 179 | 167 | 155 | 90 | 70 | 54 | 1.6 |  |  | M5 |  |
| X480AC296 | NF3010C-VZ |  |  |  |  |  |  |  |  |  |  |  |
| X480AC297 | NF3020C-VZ | 128 | 118 | 108 | 63 | 43 | 42 | 1.0 | $4.5 \times 6$ | dia. 4 | M4 | M4 |
| X480AC298 | NF3030C-VZ | 145 | 135 | 125 | 70 | 50 |  |  |  |  |  |  |
| X480AC299 | NF3040C-VZ | 179 | 167 | 155 | 90 | 54 | 54 | 1.6 |  |  | M5 |  |



Fig. 2


| Model No. | Type | A | B | C | D | E | F | G | H | J | K | L | M | N | P |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X480AC293 | NF3080A-RQ2 | 217 | 200 | 185 | 170 | 120 | 90 | 44 | 115 | 85 | 20 | $5.5 \times 7$ | dia.5.5 | M6 | M4 |
| X480AC294 | NF3150A-RQ2 | 314 | 300 | 280 | 260 | 200 | 170 | 57 | 130 | 90 | 35 | $6.5 \times 8$ | dia.6.5 | M8 | M6 |
| X480AC300 | NF3080C-RQ2 | 217 | 200 | 185 | 170 | 120 | 90 | 44 | 115 | 85 | 20 | $5.5 \times 7$ | dia.5.5 | M6 | M4 |
| X480AC301 | NF3100C-RQ2 | 254 | 230 | 215 | 200 | 150 | 120 | 57 | 115 | 80 | 30 | $6.5 \times 8$ | dia.6.5 | M8 | M6 |
| X480AC302 | NF3150C-RQ2 | 314 | 300 | 280 | 260 | 200 | 170 | 57 | 130 | 90 | 35 | $6.5 \times 8$ | dia.6.5 | M8 | M6 |

Fig. 3


| Model No. | Type | A | B | C | D | E | F | G | H | J | K | L |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| X480AC295 | NF3200A-RQ2 | 450 | 430 | 338 | 100 | 190 | 230 | 7 | 180 | (133) | M10 | M8 |
| X480AC311 | NF3250A-RQ2 |  |  |  |  |  |  |  |  |  |  |  |



## (Connection method)

(1) Install the noise filter between the power supply and inverter input terminal. Make the connection wire between the inverter and the noise filter as short as possible.
(2) Use thick short grounding wire as much as possible. Connect the grounding wire correctly.
(3) Separate the input/output lines of the noise filter.

(4) The noise filter cannot be used on the inverter output (motor) side.

## 3. Capacitive Filter (XY Filter)

Model No. X480AC185, Type: 3XYHB-105-104
Applicable to all models for HF-430NEO: rated voltage 500VAC
[Method of connection]
(1) Connect it directly to the inverter input (power supply) terminal. Make the connection line as short as possible.
(2) Ensure correct grounding. (Grounding resistance: $100 \Omega$ or less)
(3) Do not use on the inverter output (motor) side.



Weight:0.12kg

## PC Software (SAFS001 Ver.2)



A Windows PC to which "SAFSO01" has been installed.

Note: Engineering Tool (SAFS001) for drive setup and parameter management the installation files can be obtained from : http://www.shi.co.jp/ptc/.


## Optional Cassettes

| Name | Model No. | Type | Remarks |
| :---: | :---: | :---: | :---: |
| Ethernet | V906AA002 | P1-EN | Communication for Open network |
| PROFIBUS | V906AA003 | P1-PB |  |
| PROFINET | V906AA004 | P1-PN |  |
| CC-Link | V906AA007 | P1-CCL |  |
| Encoder Feedback | V906AA005 | HF-FB | For the motor with encoder |
| Analog Input/Output | V906AA006 | P1-AG | Analog Input/Output Extension |

## Screw Type Terminal Board (Option)

- The control terminal board can change from the standard board to the screw type terminal board.
Model No. V906AA008
Type: HF-TM2



## When AM Radio Picks Up Noise

## 1.When noise level is high

Take possible measures among the following in the order of 1 to 7 .
Each measure will improve noise reduction.


Note: The above measures may be insufficient in places where the broadcast reception is weak.

## Corrective measures

1. Lower the carrier frequency as much as possible. Up to approx. 10
kHz when low-noise operation is necessary.
2. Install a zero-phase reactor on the output side of the inverter. (Type: RC9129)
3. Install an Noise filter on the input side of the inverter.
4. Connect the inverter and motor with a metal conduit or shielded cable.
5. Use 4-wire cable as a motor power line, and ground one of the wires.
6. Connect the inverter and power with a metal conduit or shielded cable.
7. Install a drive isolation or noise reduction transtormer for the power supply. The transformer capacity differs according to the inverter capacity and voltage.

Connection of a zero-phase reactor and a noise filter


Note: Turn wires the same number of times for all phases of the zerophase reactor. 3 times (4 T) or more Increase the number of zerophase reactor when the cable is too thick to wind correctly.

## 2. When noise level is low

Take possible measures among the following in the order of 1 to 6 .
Each measure will improve noise reduction


Corrective measures

1. Lower the carrier trequency as much as possible. Up to approx. 10 kHz when low-noise operaton is necessary.
2. Install a zero-phase reactor on the output side of the inverter. (Type: RC9129)
3. Install a zero-phase reactor on the input side the inverter. (Type: RC9129)
4. Install a capacitive filter on the input side of the inverter. (Type: 3XYHB-105104)
5. Connect the inverter and motor with a metal conduit or shielded cable.
6. Use 4-wire cable as a motor power line, and ground one of the wires.
$\square$ Connection of zero-phase reactors and a capacitive filter


Note: Turn wires the same number of times for all phases of the zerophase reactor. 3 times ( 4 T ) or more Increase the number of zerophase reactor when the cable is too thick to wind correctly.

## Notes to Inverter Users

## Precautions for Application of Inverter

- Power supply

1. When the inverter is connected directly to a large-capacity power supply (especially in a 400 V line), excessively large peak will flow in, breaking the inverter unit. In such a case, install an AC reactor (option) on the input side of the inverter unit.
2. Install an AC reactor in the following cases as well.
1) There is a possibility of surge voltage generated in the power supply system: When surge energy flows into the inverter, OV tripping may result.
2) When a large-capacity thyristor Leonard or other phase control units are installed
3. When the inverter is operated by a private power generator, secure a sufficiently large generation capacity for the inverter kVA in consideration of the influence of higher harmonic current on the generator.

- Installation

1. Do not install the inverter in places with poor environmental conditions subjected to dust, oil mist, corrosive gas, or inflammable gas.
2. In places where there is suspended matter in the air, install the inverter inside a "closed-type" panel to prevent entry of suspended matter. Determine the cooling method and dimensions of the panel so that the ambient temperature around the inverter will be lower than the allowable temperature.
3. Vertically install the inverter on a wall. Do not install it on wood or other inflammable products.

- Handling

1. Do not connect the output terminal UVW of the inverter to the power supply; otherwise the inverter will be broken. Carefully check the wiring for correct arrangement before turning on the power.
2. It takes some time for the internal capacitors to discharge completely after the power is turned off. Check that the charge lamp on the printed circuit board is OFF before inspection.

- Operation

1. Do not start and stop the inverter frequently by means of an electromagnetic contactor ( MC ) installed on the input side of the inverter; otherwise failure of the inverter will result.
2. When more than one motor is operated by one inverter, select the inverter capacity so that 1.1 times the total rated current of the motors will not exceed the rated output current of the inverter.
3. When an error occurs, the protective function is activated and the inverter trips and stops operation. In that case, motors will not stop immediately. When emergency stop is desired, use mechanical brakes as well.
4. The acceleration time of the motor is subject to the inertial moment of the motor and load, motor torque, and load torque.
1) When the acceleration time setting is too short, the stall prevention function is activated, and the setting time is elongated automatically. For stable acceleration and deceleration, set longer time so that the stall prevention function will not be activated.
2) When the deceleration time is too short, the stall prevention function is activated or OV tripping will result. Set longer deceleration time or install a braking unit/braking resistor.

## When Operating 400 V Class 3-phase Motor

When the inverter is used to drive a 3-phase motor (general-purpose motor), a high carrier frequency type inverter (e.g. IGBT) requiring high input voltage (more than 400 V ) is necessary. When the wiring distance is long, the micro surge voltage of the motor must be taken into consideration. Contact us in such cases.

## Motor Operating Characteristics



## Motor Temperature Rise

When a general-purpose motor is used in variable-speed operation with an inverter, the temperature rise of the motor will be slightly greater than in cases where commercial power is used. The causes are shown below:
Influence of output waveform Unlike commercial power, the output waveform of an inverter is not a perfect sine wave, and contains higher harmonics. Therefore, the motor loss increases and the temperature is slightly higher.

Reduction in the motor cooling effect
Motors are cooled by the fan on the motor itself. When the motor speed is reduced by an inverter, the cooling effect will decrease.

Therefore, lower the load torque or use an inverter motor to control temperature rise when the frequency is below the frequency of commercial power.

The inverter described in this brochure is used for variable-speed operation of 3-phase induction motors for general industry use.

## CAUTION

$\boldsymbol{\nabla}$ This product is designed and manufactured for use in industrial applications.
When this product is applied to the following applications that have a significant impact on the human, and public functions (nuclear power, aerospace, public transportation, medical instrument and related applications), contact our agency at each time.
-Our products are manufactured under stringent quality control. However, install a safety device on the equipment side in order to prevent serious accidents or loss when our products are applied to equipment that may cause serious accidents or loss due to failure or malfunction.
$\boldsymbol{D}$ Do not use the inverter for any load other than 3-phase induction motors.
$\boldsymbol{W}$ When an explosion-proof moter is selected, pay attention to the installation environment, because the inverter is not of an explosion-proof type.
-Carefully read the "Operation Manual" before use for correct operation. Read the manual carefully aiso for long-term storage.
-Electrical work is necessary for installation of the inverter. Leave the electric work to specialists.

## The cautions to special motor application

## <Pole change motor>

Since the pole change motor differs from ampere rating, the maximum current of the motor is checked and an inverter is selected.
Please be sure to perform the change of the number of poles, after stooping the motor.
If it carries out, over voltage or over current protection will operate, and the motor will serve as a free run.
<Motor with the brake>
The power supply for the brake is certainly connected to the primary side of an inverter.
Please shut down an inverter output at the time of the brake operation (at the time of the motor stop).
In the kind of brake, the sound of lining may come out in a low-speed.
<Single-phase motor>
The single-phase motor does not fit an inverter drive.
There is a possibility of current flowing and destroying a capacitor and the thing of phase-splitting starting and rebounding starting is internal centrifugally.
In order that the power switch may not operate, there is a possibility of damaging a starting coil by fire.

## 1. Warranty Policy on Inverter

| Warranty period | The warranty shall be 18 months from date of shipment or 12 months after initial operation, whichever is shorter. |
| :---: | :---: |
| Warranty condition | In the event that any problem or damage to the Product arises during the "Warranty Period" from defects in the Product whenever the Product is properly installed and combined with the Buyer's equipment or machines maintained as specified in the maintenance manual, and properly operated under the conditions described in the catalog or as otherwise agreed upon in writing between the Seller and the Buyer or its customers; the Seller will provide, at its sole discretion, appropriate repair or replacement of the Product without charge at a designated facility, except as stipulated in the "Warranty Exclusions" as described below. <br> However, if the Product is installed or integrated into the Buyer's equipment or machines, the Seller shall not reimburse the cost of: removal or re-installation of the Product or other incidental costs related thereto, any lost opportunity, any profit loss or other incidental or consequential losses or damages incurred by the Buyer or its customers. |
| Warranty exclusion | Not withstanding the above warranty, the warranty as set forth herein shall not apply to any problem or damage to the Product that is caused by: <br> 1. Installation, connection, combination or integration of the Product in or to the other equipment or machine that rendered by any person or entity other than the Seller; <br> 2. Insufficient maintenance or improper operation by the Buyer or its customers such that the Product is not maintained in accordance with the maintenance manual provided or designated by the Seller; <br> 3. Improper use or operation of the Product by the Buyer or its customers that is not informed to the Seller, including, without limitation, the Buyer's or its customers' operation of the Product not in conformity with the specifications; <br> 4. Any problem or damage on any equipment or machine to which the Product is installed, connected or combined or any specifications particular to the Buyer or its customers; <br> 5. Any changes, modifications, improvements or alterations to the Product or those functions that are rendered on the Product by any person or entity other than the Seller; <br> 6. Any parts in the Product that are supplied or designated by the Buyer or its customers; <br> 7. Earthquake, fire, flood, salt air, gas, lightning, acts of God or any other reasons beyond the control of the Seller; <br> 8. Normal wear and tear, or deterioration of the Product's parts, such as the cooling fan bearings; <br> 9. Any other troubles, problems or damage to the Product that are not attributable to the Seller. |
| Others | The Seller will not be responsibility for the installation and removal of the inverter. Any inverter transportation cost shall be born by both Seller and Buyer. |

## 2. Warranty Policy on Repaired and Returned Products

| Warranty <br> period | The warranty shall be 6 months from date of repair and shipment. |
| :---: | :--- |
| Warranty <br> condition | Warranty on repaired Product will apply only on the replacement parts used in the repair done or authorized by the Seller. All <br> other aspects conform to the Warranty Conditions described in item 1. |
| Warranty <br> exclusion | Please refer to Warranty Exclusions described in item 1. |
| Others | Please refer to Others decribed in item 1. |

INVERTER HF-430NEO

## memo

## Worldwide Locations

## U.S.A

Sumitomo Machinery Corporation of America (SMA)
4200 Holland Blvd. Chesapeake, VA 23323, U.S.A.
TEL (1)757-485-3355 FAX (1)757-485-7490

## Canada

SM Cyclo of Canada, Ltd. (SMC)
1453 Cornwall Road, Oakville, Canada ON L6J 7T5
TEL (1)905-469-1050 FAX (1)905-469-1055

## Mexico

SM Cyclo de Mexico, S.A. de C.V. (SMME)
Av. Desarrollo 541, Col. Finsa, Guadalupe,
Nuevo León, México, CP67132
TEL (52)81-8144-5130 FAX (52)81-8144-5130

## Brazil

Sumitomo Industrias Pesadas do Brasil Ltda. (SHIB)
Rodovia do Acucar (SP-075) Km 26
Itu, Sao Paulo, Brasil
TEL (55)11-4886-1000 FAX (55)11-4886-1000

## Chile

SM-Cyclo de Chile Ltda. (SMCH)
Camino Lo Echevers 550, Bodegas 5 y 6,
Quilicura, Región Metropolitana, Chile
TEL (56)2-892-7000 FAX (56)2-892-700

## Argentina

SM-Cyclo de Argentina S.A. (SMAR)
Ing Delpini 2230, B1615KGB Grand Bourg,
Malvinas Argentinas, Buenos Aires, Argentina
TEL (54)3327-45-4095 FAX (54)3327-45-4099

## Guatemala

SM Cyclo de Guatemala Ensambladora, Ltda.

## (SMGT)

Parque Industrial Unisur, 0 Calle B 19-50 Zona 3
Bodega D-1 Delta Bárcenas en Villa Nueva, Guatemala TEL (502)6648-0500 FAX (502)6631-9171

## Colombia

SM Cyclo Colombia, S.A.S. (SMCO)
Parque Industrial Celta, Km 7.0 Autopista Medellín, Costado Occidental, Funza, Cundinamarca, Colombia TEL (57)1-300-0673

## Peru

SM Cyclo de Perú, S.A.C (SMPE)
Jr. Monte Rosa 255, Oficina 702, Lima,
Santiago de Surco, Perú
TEL (51)1-713-0342 FAX (51)1-715-0223

## Germany

Sumitomo (SHI) Cyclo Drive Germany GmbH (SCG)
Cyclostraße 92, 85229 Markt Indersdorf, Germany TEL (49)8136-66-0 FAX (49)8136-5771

## Austria

Sumitomo (SHI) Cyclo Drive Germany GmbH (SCG
SCG Branch Austria Office
Gruentalerstraße 30A, 4020 Linz, Austria
TEL (43)732-330958 FAX (43)732-331978

## Belgium

Hansen Industrial Transmissions NV (HIT)
Leonardo da Vincilaan 1, Edegem, Belgium
TEL (32)34-50-12-11 FAX (32)34-50-12-20

## France

SM-Cyclo France SAS (SMFR)
8 Avenue Christian Doppler, 77700 Serris, France
TEL (33) 164171717 FAX (33)164171718

## Italy

SM-Cyclo Italy Srl (SMIT)
Via dell' Artigianato 23, 20010 Cornaredo (MI), Italy TEL (39)293-481101 FAX (39)293-481103

## Spain

SM-Cyclo Iberia, S.L.U. (SMIB)
C/Gran Vía № 63 Bis, Planta 1, Departamento 1B
48011 Bilbao-Vizcaya, Spain
TEL (34)9448-05389 FAX (34)9448-01550

## United Kingdom

SM-Cyclo UK Ltd. (SMUK)
Unit 29, Bergen Way, Sutton Fields Industrial Estate, Kingston upon Hull, HU7 OYQ, East Yorkshire,
United Kingdom
TEL (44)1482-790340 FAX (44)1482-790321

## Turkey

SM Cyclo Turkey Güç Aktarım Sis. Tic. Ltd. Sti. (SMTR)
Barbaros Mh. Çiğdem Sk. Ağaoğlu, Office Mrk. No:1 Kat:4 D. 18
Ataşehir, Istanbul, Turkey
TEL (90)216-250-6069 FAX (90)216-250-5556

## India

Sumi-Cyclo Drive India Private Limited (SDI)
Gat No. 186, Raisoni Industrial Park, Alandi Markal Road,
Fulgaon-Pune, Maharashtra, India
TEL (91)96-0774-5353

## China

Sumitomo (SHI) Cyclo Drive Shanghai, Ltd.
(SCS)
11F, SMEG Plaza, No. 1386 Hongqiao Road,
Changning District, Shanghai, China 200336
TEL (86)21-3462-7877 FAX (86)21-3462-7922

## Hong Kong

SM-Cyclo of Hong Kong Co., Ltd. (SMHK)
Room 19, 28th Floor, Metropole Square, No. 2 On
Yiu Street, Shatin, New Territories, Hong Kong
TEL (852)2460-1881 FAX (852)2460-1882

## Korea

Sumitomo (SHI) Cyclo Drive Korea, Ltd. (SCK)
Room \#913, Royal Bldg, Saemunan-ro 5 gil 19, Jongro-gu,
Seoul, Korea 03173
TEL (82)2-730-0151 FAX (82)2-730-0156

## Taiwan

Tatung SM-Cyclo Co., Ltd. (TSC)
22 Chungshan N. Road 3rd., Sec. Taipei, Taiwan 104 R.O.C.

TEL (886)2-2595-7275 FAX (886)2-2595-5594

## Singapore

Sumitomo (SHI) Cyclo Drive Asia Pacific Pte.
Ltd. (SCA)
15 Kwong Min Road, Singapore 628718
TEL (65)6591-7800 FAX (65)6863-4238

## Philippines

Sumitomo (SHI) Cyclo Drive Asia Pacific Pte. Ltd. Philippines Branch Office (SMPH)
C4 \& C5 Buildings Granville Industrial Complex, Carmona,
Cavite 4116, Philippines
TEL (63)2-584-4921 FAX (63)2-584-4922

## Vietnam

SM-Cyclo (Vietnam) Co., Ltd. (SMVN)
Factory 2B, Lot K1-2-5, Road No. 2-3-5A,
e Minh Xuan Industrial Park, Binh Chanh Dist,
HCMC, Vietnam
TEL (84)8-3766-3709 FAX (84)8-3766-3710

## Malaysia

SM-Cyclo (Malaysia) Sdn. Bhd. (SMMA
No.7C, Jalan Anggerik Mokara 31/56, Kota Kemuning,
Seksyen 31, 40460 Shah Alam, Selangor Darul Ehsan,
Malaysia
TEL (60)3-5121-0455 FAX (60)3-5121-0578

## Indonesia

PT. SM-Cyclo Indonesia (SMID)
Jalan Sungkai Blok F 25 No. 09 K, Delta Silicon III,
Lippo Cikarang, Bekasi 17530, Indonesia
TEL (62)21-2961-2100 FAX (62)21-2961-2211

## Thailand

SM-Cyclo (Thailand) Co., Ltd. (SMTH)
195 Empire Tower, Unit 2103-4, 21st Floor, South
Sathorn Road, Yannawa, Sathorn, Bangkok 10120, Thailand
TEL (66)2670-0998 FAX (66)2670-0999

## Australia

Sumitomo (SHI) Hansen Australia Pty. Ltd.
SHAU)
181 Power St, Glendenning, NSW 2761, Australia
TEL (61)2-9208-3000 FAX (61)2-9208-3050

## Japan

Sumitomo Heavy Industries, Ltd. (SHI)
ThinkPark Tower, 1-1 Osaki 2-chome, Shinagawa-ku,
Tokyo 141-6025, Japan
TEL (81)3-6737-2511 FAX (81)3-6866-5160


[^0]:    Construction of current transformer (CT) COMA-15A type: Totally molded current transformer with primary winding COM-15-26 type: Totally molded current transformer, throughholes type COM-15-30 type: Totally molded current transformer, throughholes type
    Install the current transformer (CT) on the output side of the inverter.

