

標準機械事業本部

トルクリミッ夕付 サイクロ＂減速機

コンパクトで信頼性•応答性の良いトルクセンサー機構を持つ
トルクリミッタ付サイクロ ${ }^{\circledR}$ 減速機がさらに性能アップ。

豊富な仕様であらゆるニーズにお応えします。

1．コンパクト

大減速比•高効率•部品点数小と三拍子そろったコンパクトな設計のサイクロ減速機に優れた機構のト ルクセンサー（ばね・リミットスイッチ形，ロードセル形）を内蔵しています。
2．精度•信頼性が高い
センサーの基本部はコイルばねまたはロードセルで構成きれており，精度が良く，信頼性も抜群です。 （トルク設定精度 $\pm 5 \sim \pm 10 \%$ ）
3．経済的な装置設計が可能
正確なトルク設定と高い信頼性により，周辺機器の安全率を下げることができ，装置全体として経済的 な設計が可能となります。
4．瞬間的過負荷にも作動
サーマルリレーなどに比べて時間の遅れが少なく，過負荷を鋭敏にキャッチします。
5．広範囲なトルク調整
調整範囲が設定トルクに対し $\pm 25 \%$ と広く，装置の実トルクに合わせた調整が現場で容易にできます。
6．安全な無人運転
電動機の操作回路にブザー，ランプを組込み安全で確実な無人運転が可能です。
また 2 重安全形， 3 重安全形を使用することによりシックナーの軸昇降用補助モータを駆動することも できます。
7．他の保護装置との組合せも可能
シャーピンなどを組合せ，過負荷に対して，2重，3重の保護ができます。

1．仕様

トルクリミッタ付サイクロ減速機には下記のシリーズがあります。ご用命の際には表1，表2 の仕様をご指示ください。

■表1．トルクリミッタ部の仕様（青字が標準形です）

（注1）${ }^{\text {保護方式 }}$	トルク検出機構	（注3） トルクインジケータ	（注5）出 カ 信 号	低速軸回転方向 （出力側より見る）	設定精度
非防爆形	ばね・リミットスイッチ形	$\begin{aligned} & \text { インジケータなし } \\ & \text { (注4) } \\ & \text { インジケータ付A形 } \\ & \text { (60~100\%負荷・アナログ表示) } \\ & \\ & \text { インジケータ付B形 } \\ & \text { (0~100\%負荷・アナログ表示) } \end{aligned}$	1 点 (メインモータOFF) 2 点〔2重安全形〕 $\binom{\text { メインモータOFFとサブモーダ夏 }}{\text { ON または警報 }}$ 3 点〔3重安全形〕 （2点＋補助信号（注7））	右回転形	設定トル クに対し
（注2） 防 爆 形	ロードセル形	インジケータ付 $\left(\begin{array}{l} \text { 負荷をアナログまたはディジ } \\ \text { タルで遠隔表示します。 } \\ \text { 負荷率\%, トルク, その他注9) } \\ \text { トルクに対応した目盛単位の } \\ \text { 表示が可能です。 } \end{array}\right)$	1 － 3 点のON，OFF信号 $\left(\begin{array}{l} \text { 負荷に対応したアナログ信号 } \\ \text { (電流, 電圧, ロードセル歪量) } \\ \text { が得られ白動制御に適してい } \\ \text { ます。 } \end{array}\right)$	両回転形	

（注1）トルクリミッタ部は屋内，屋外で使用できます。冠水形，水中形も製作できますのでご照会ください。
（注2）ばね・リミットスイッチ形の場合は $\mathrm{d}_{2} \mathrm{G} 4$ で，ロードセル形の場合は本質安全防爆で製作いたします。
（注3）インジケータ付 A 形およびB 形の場合は減速機本体上にインジケータが装着されます。
（注4）機種によっては $50 \sim 100 \%$ 負荷表示になることがあります。
（注5）1－3点の信号に対応するトルク値をご指示ください。
（注6）サブモータの例としてはシックナの軸昇降用モータなどがあります。
（注7）補助信号はシックナの汚泥量をコントロールする場合などに使用できます。
（注8）$\pm 5 \%$ のものも製作可能です。ご照会ください。
（注9）ご希望の目盛単位とトルクとの関係をご指示ください。

表2．電動機の仕様とサイクロ減速機との連結

（注1）直結形電動機は住友製でトルクリミッタ付専用設計をしています。
電動機容量によってはJ（連結台付），または台板付になることがあります。選定の項（表5，表6）をご参照ください。 （注2）Jは形式記号です。形式の項をご参照ください。

電動機容量記号			
記号	kW	記号	kW
01	0.1	8	5.5
02	0.2	10	7.5
05	0.4	15	11
1	0.75	20	15
2	1.5	30	22
3	2.2	40	30
5	3.7		

特殊仕様表示記号（S）

例

1 段形	2段形（出力側＋入力側）
210	$18410 \mathrm{~B}(84+210)$（注）
89	$939 \mathrm{~A}(93+89)$
3段形（出力側＋中間段＋入力側）	
$1881008 \mathrm{~A}(88+210+208)$（注）	

（注）出力側枠番が $84 \#-93 \#$ の機種のうち入力側枠番が208\＃～211\＃の場合は枠番の先頭 に 1 がつきます。

例2

HM5－18611A－TL－121
（トルクリミッタ1
（補助速形式
（段形枠番

機種例（）内は両軸形の場合です。
（

（上表以外の機種）

－台板付－冠水形（Cat．NO．C127）－水中形（Cat．NO．C124）・センターポスト形（Cat．NO．C137）・センターフランジ形 －軸昇降装置付（Cat．NO．C138）・バイエル・サイクロ可変減速機（台板付横形•連結台付立形）－ウオームナトルクリミッタ付 サイクロ減速機－遊星ギヤ＋トルクリミッタ付サイクロ減速機（Cat．No．C162）
更にこの他にも特殊形を多数手掛けており，どのようなご要求にもお応えできますのでご照会ください。

3．検出機構とトルク表示

3•1 ばね・リミットスイッチ形

■トルクインジケータなし
サイクロ減速機の低速軸（4）のトルクは常に曲線板（3）を介して枠②）に伝えられており，枠②）は固定枠（1）の中で自由 に回ることができます。低速軸（4）に負荷が掛ると，枠（2）は曲線板（3）のトルク反力により低速軸（4）と反対方向に回転し，レバー（6）がコイルばね（5）を押します。光して予め設定された以上の負荷が掛るとレバー⑥がリミットスイ ッチ（7）を作動させ瞬時に電動機電流を切ります。電動機が停止すると，ヨイルばね（5）によりレバー（6）はばねの反力で中立の位置に戻ります。
トルクリミッタ機構部はサイクロ減速機が 1 段形， 2 段形の場合は 1 段目（入力段）に， 3 段形の場合は 2 段目に配置されます。
コイルばね（5）は片方向回転の場合は片側に1個（下図参照），両方向回転の場合はストッパー（8）が除去され両側に計 2 個組付けられます。

－トルクインジケータ付A形

上図 1 の構造にインジケータA形を付加したもので，レバー（6）の動きを図2の機構で指針（5）に伝え，設定トルク値に対する負荷率（\％）を目盛板（2）に60～100\％の範囲で表示します。ただし，機種によっては $50 \sim 100 \%$ 表示となる場合があります。

■トルクインジケータ付B形

負荷率を $0 \sim 100 \%$ の範囲で表示します。インジケータの機構はA形と同じですが， 60% 以下の低負荷率を表示する ため下記のような機構になっています。
図3のように両側にばねを入れ，予圧用板（7）により予圧を掛け，調整ボルト（8）により作動中心を決めます。
これにより左右のばねが釣り合い，無負荷の状態からの負荷トルクの変動を検知することが可能となります。
図3

（1）ばね押え板 B
（4）ばねケース
（7）予圧用板
（2）ブッシュ
（5）ばね
（8）作動中心調整ボルト
（3）ばね押え板A
（6）レバー
（9）ケースカバー

注） 0 点付近からの負荷を正確に表示する必要がある場合は，ロードセル形をご利用ください，

3－2 ロードセル形

減速機構部の構造および動作は3•1と同じです。曲線板（3）により発生する枠（2）のトルク反カはレバー（6）から鋼球（4） ロッド（5）を介してロードセル（7）に伝えられ，負荷トルクに対応する電気的アナログ信号が得られます。この機構 では負荷トルクを直接ロードセル（7）に伝えるため，無負荷から 100% 負荷までを正確に検知できます。增幅器，メ ータリレーを付加することにより負荷トルクの連続表示，メインモータカットオフ，負荷トルクの自動制御など が可能となります。更には住友のACインバータドライブや，直流電動機を組合せますと，負荷変動に追随した回転数制御を行なうこともできます。

図4 遠隔指示が必要な場合もロードセル形が最適です。

（1）固定枠
（2）枠
（3）曲線板
（4）金岡球
（5）ロッド
（6）レバー
（7）ロードセル
両方向回転の場合はストッパー （9）を除去して両側に取付。
（8）ロッドケース
（9）ストッパー

機器構成例

4．出力信号

$4 \cdot 1$ ばね・リミットスイッチ形

1 点信号

スイッチ箱（1）の中にリミットスイッチ（7）がついてお り，レバーの先に固定されたドッグ（2）によって設定 トルク時にメインモータをOFFします。

図 6
（1）スイッチ箱
（2）ドッグ
（7）リミットスイッチ
（形 $2-15 G Q 22-B$ ）
（3）端子箱
（4）船用電線貫通金物（15b）

2点信号〔2重安全形〕
\square
3点信号〔3重安全形〕
図 6 の構造にリミットスイッチを 1 個または 2 個付加したものでメインモータOFFの他にサブモータON または警報ON（2点），さらに補助信号が必要な場合は図7の2点鎖線で示したリミットスイッチを付加して （3点）とします。補助信号はシックナの活泥量をコ ントロールするポンプ用モータの駆動に便利です。

（注）図6の端子箱（3）は 2 点信号の場－合は 2 個， 3 点信号の場合 は 3 個になります。1－3点信号に使用するリミットスイ ッチの仕様は表3をご参照ください。
防爆形（ $\left.\mathrm{d}_{2} \mathrm{G} 4\right)$ についてはご照会ください。
表3．リミットスイッチの仕様（非防爆形）（㧣立石電機製
低速軸回転方向とリミットスイッチの形式（個数）

| 信号 回転方向 | 右または左 | 両 方 向 |
| :--- | :---: | :---: | :---: |
| メインモータOFF | 形 $Z-15 G Q 22-B(1$ 個 $)$ | |
| サブモータ又は警報 $O N$ | 形 $Z-15 \mathrm{GQ}-\mathrm{B}(1$ 個 $)$ | 形 $Z-15 \mathrm{GQ}-\mathrm{B}(2$ 個 $)$ |
| 補助信号 | 形 $Z-15 \mathrm{GQ}-\mathrm{B}(1$ 個 $)$ | ご照会ください |

定格	突入電流	$\begin{array}{l}\text { 常時閉路 } \\ \text { 常時最開路 }\end{array}$	最大 150 A

定格電王 （V）	無誘導負荷（A）			誘導負荷（A）		
	抵抗負荷	ランプ負荷		誘導負荷	電動機負荷	
	常時閉路／常時開路	常時閉路	常時開路	常時閉路／常時開路	常時閉路	常時開路
AC125	15	3	1.5	15	5	2.5
250	15	2.5	1.25	15	3	1.5
500	10	1.5	0.75	6	1.5	0.75
DC 8	15	3	1.5	15	5	2.5
14	15	3	1.5	10	5	25
30	6	3	1.5	5	5	2.5
125	0.5	0.5	0.5	0.05	0.05	0.05
250	0.25	0.25	0.25	0.03	0.03	0.03

接触形式

$4 \cdot 2$ ロードセル形

接 点	メータリレーにより1～3点
	のON，OFF信号が得られます。
アナログ信号出力	DC4～20mA，DCO～10V
増幅器電源	ACl00V $\pm 10 \%$ 他
詳細仕様について	別途ご照会ください。

5．接続

■始動補償
始動時のトルクが設定トルクより大きい場合（始動時にショックのある場合，ブレ一キ付電動機の場合など）には図8のタイマーTRを始動補償用として組込んでください。
■ばね・リミットスイッチ形接続例（ 2 点信号• 2 重安全形•両方向回転）

ロードセル形の接続については別途ご照会ください。

6．設定トルクの調整方法

表4．調整範囲

ばね・リミットスイッチ形	設定トルクに対して土25 \％の範囲内で調整可能です。（注）
ロードセル形	負荷率 $0 ~ 100 \%$ の間で任意に設定できます。

（注）インジケータ付B形は調整できません。

6－1 ばね・リミットスイッチ形

1．当社工場出荷時に負荷テストを行ない，お客様ご要求の設定トルクでリミットスイッチが作動するようセッ トしています。
2．設定トルク値は図9の調整目盛板（门の央に表示されています。同時に士 150° の位置に，それぞれに対応す るトルク $T_{1}, ~ T_{2}$ が表示されています。設定値を変更する場合は $T_{1} T_{2}$ を目安に調整してください。
3．当初の設定トルクよりトルクアップまたはダウンの必要が生じた場合は調整ボルト（2）で再調整してください。 この場合トルクの調整範囲は設定トルクに対して $\pm 25 \%$ の範囲で行なってください。 $\pm 25 \%$ の範囲であれば $T_{1, ~} T_{2}$ をオーバースケールすることも可能ですが，定格出カトルクまたは〔 ］トルク値を越える調整はさけ てください。（選定の項をご参照ください。）
4．設定トルク調整方法
調整ボルト（2）のネジ部側面切欠部に指標（4）が印されています。調整ボルト②）のマーク（5）が調整目盛板（1）の設定トルク位置にある時にケース蓋（3）の端面と指標（4）が一致していますからここを基準として微動調整を行 なってください。
調整ボルトをゆるめ，または締めすぎた場合はケース蓋（3）の端面と指標（4）が一致した位置にセットし直して から再調整してください。

図9

（注）両方向回転の場合は両側に調整ボルトおよび目盛板がつきます。

$6 \cdot 2$ ロードセル形

1．ばね・リミットスイッチ形と同様に当社出荷時に負荷テストを行ない，お客様ご要求の設定トルクにセットし てあります。
2．当初の設定トルクを変える場合は使用される機器（メータリレー，増幅器など）によりトルク調整の方法が異 なりますので別途ご照会ください。

7．選定

1．トルクリミッタ付サイクロ減速機は一様な負荷のもとで連続運転（24H／D）できるように設計製作されて います。選定に際しては表5～7の標準機種組合せ表（減速比 6～109091）をご覧ください。尚，始動頻度や衝撃が激しい場合はご照会ください。
2．設定トルクは定格出カトルク以内としてください。ただし，表5，6，7で［ ］付の機種は［ ］中のト ルク値以内としてください。
3．回転数には電動機のスリップは見込まれていません。
4．入力回転数が異なる場合はご照会ください。

減速比 6～87 表5．トルクリミッタ付サイクロ減速機1段形標準機種（電動機との標準組合せ）

定格 出力 トルク kgf•m		6		11		17		29		35		43		59		87	
		250／300		136／164		88／106		$52 / 62$		43／51		35／42		25／31		17／21	
		枠番	$\begin{aligned} & \text { 入力 } \\ & \mathrm{kW} \end{aligned}$	枠番	$\begin{gathered} \text { 入力 } \\ \text { kW } \end{gathered}$	枠番	$\begin{aligned} & \text { 入力 } \\ & \text { kW } \end{aligned}$	枠番	$\begin{aligned} & \text { 入力 } \\ & \text { kW } \end{aligned}$	枠番	$\begin{array}{\|l\|} \hline \text { 入力 } \\ \text { kW } \end{array}$	枠番	$\begin{aligned} & \text { 入力 } \\ & \text { kW } \end{aligned}$	枠番	$\begin{aligned} & \text { 入力 } \\ & \text { kW } \end{aligned}$	枠番	$\begin{aligned} & \text { 入力 } \\ & \text { kW } \end{aligned}$
13		210	1.5	210	1.5	210	（1．5）	210	0.75	210	（0．75）	210	0.75	$\begin{aligned} & 210 \\ & 〔 11 〕 \end{aligned}$	0.4	$\begin{aligned} & 210 \\ & 〔 6 〕 \end{aligned}$	0.2
17		211	$\begin{aligned} & 2.2 \\ & 3.7 \end{aligned}$	211	2.2	211	1.5	211	1.5	211	1.5	211	1.5	211	0.75	$\begin{gathered} 211 \\ 〔 15 〕 \end{gathered}$	0.4
43		84	$\begin{aligned} & 5.5 \\ & 7.5 \\ & \hline \end{aligned}$	84	3.7 5.5 (7.5)	84	$\begin{aligned} & 2.2 \\ & 3.7 \\ & \hline \end{aligned}$	84	$\begin{aligned} & 1.5 \\ & 2.2 \end{aligned}$	84	（2．2）	84	2.2	84	1.5	$\begin{gathered} 84 \\ 〔 28 〕 \end{gathered}$	0.75
88		86	$\begin{aligned} & 11 \text { (J) } \\ & 15 \text { (I) } \end{aligned}$	86	$\begin{array}{\|c} 7.5 \\ 11 \text { (J) } \end{array}$	86	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	86	$\begin{gathered} 3.7 \\ (5.5) \end{gathered}$	86	3.7	86	（3．7）	86	2.2	86	2.2
135		87	22 （1）	87	15 （J）	87	$\begin{aligned} & 11 \text { (I) } \\ & \text { (15)(I) } \end{aligned}$	87	7.5	87	$\begin{array}{\|c} 5.5 \\ (7.5) \\ \hline \end{array}$	87	（5．5）	87	3.7		
170				88	22 （1）	88	15（1）	88	（11）（1）	88	7.5	88	（7．5）	88	（5，5）	88	5.5
450				89	30	89	$\begin{aligned} & 22 \\ & 30 \end{aligned}$	89	$\begin{aligned} & 15 \\ & 22 \end{aligned}$	89	$\begin{aligned} & 11 \\ & 15 \end{aligned}$	89	$\begin{aligned} & 11 \\ & 15 \end{aligned}$	89	$\begin{gathered} 7.5 \\ 11 \end{gathered}$	$\begin{gathered} 89 \\ {[317]} \end{gathered}$	7.5

〔選定要領〕

1．〔〕内はサイクロ減速機枠番，減速比固有の定格出力 トルクです。
〔 〕のない機種は左欄の値が定格出カトルクになります。
2．設定可能なトルクの最大値Tmax．は下記のとおりです。

地区	入カ	機種	Tmax． $\mathrm{kgf} \cdot \mathrm{m}$	備 考
50 Hz	$\begin{gathered} \text { 青字 } \\ \left(\begin{array}{l} \text { 青字) } \end{array}\right) \end{gathered}$	〔 〕無	定格出カトルク	
		〔 〕付	〔 〕内トルク	
	黒字	〔 〕無	$0.585 \cdot P \cdot Z$	電動機の全容量 で使用できます。
60Hz	青字	〔 〕無	定格出カトルク	
		〔 〕付	〔 〕内トルク	
	黑字•（青字）	〔 〕無	$0.487 \cdot P \cdot Z$	電動機の全容量 で使用できます。

3．入力 $k W$ に（J）のついた機種は連結台付（HJM，VJM）または台板付となりますのでご照会ください。

〔選定例〕

減速比59，電源周波数 60 Hz ，電動機直結形で設定トルク60 kgf•mが必要な場合
－まず設定トルク $60 \mathrm{kgf} \cdot \mathrm{m}$ を満足する定格出カトルク $88 \mathrm{kgf} \cdot \mathrm{m}$ と減速比59の交点の欄より下記データを抽出します。

枠番	86
入力（電動機容量）	2.2 kW

－次に設定トルクに対する電動機容量をチェックします。 （〔選定要領〕第2項 60 Hz 地区参照） $\mathrm{Tmax}=0.487 \cdot \mathrm{P} \cdot \mathrm{Z}=0.487 \times 2.2 \times 59=63 \mathrm{kgf} \cdot \mathrm{m}$ となり設定トル クを満足しますのでモー夕は2．2kWを選定します。

ただし，P：入力 kW ， Z ：減速比（表5）

減速比 66～7569 表6．トルクリミッタ付サイクロ減速機2段形標準機種（電動機との標準組合せ）

〔選定要領〕

1．〔」内はサイクロ減速機枠番，減速比固有 の定格出カトルクです。〔 〕のない機種は両端の値が定格出カトルクになります。

2．設定可能なトルクの最大値Tmax．は下記のとおりです。

地区	入 力 kW	機種	Tmax． kgf •m	備 考
50 Hz	青字•（青字）	〔 〕無	定格出カトルク	
		〔 〕付	〔 〕内トルク	
	黒字	〔 〕無	$0.520 \cdot p \cdot z$	電動機の全容量 で使用できます。
		（ ）付		

2段形標準機種の減速比組合せは次の通りです。（ 2 段目（出力側）$\times 1$ 段目（入力側））

	$\begin{aligned} & 595 \\ & (35 \times 17) \end{aligned}$		$\begin{aligned} & 649 \\ & (59 \times 11) \end{aligned}$		$\begin{aligned} & 731 \\ & (43 \times 17) \end{aligned}$		$\begin{aligned} & 841 \\ & (29 \times 29) \end{aligned}$		$\begin{aligned} & 957 \\ & (87 \times 11) \end{aligned}$		$\begin{gathered} 1003 \\ (59 \times 17) \end{gathered}$		1015 (35×29)		$\underset{(35 \times 35)}{1225}$		$\begin{array}{r} 1247 \\ (43 \times 29) \end{array}$		$\begin{gathered} 1479 \\ (87 \times 17) \end{gathered}$		$\underset{(43 \times 35)}{1505}$		$\underset{(59 \times 29)}{1711}$		$1849$$(43 \times 43)$		$\underset{(59 \times 35)}{2065}$		$\underset{(87 \times 29)}{2523}$		$\underset{(59 \times 43)}{2537}$		$\begin{gathered} 3045 \\ (87 \times 35) \end{gathered}$		$\underset{(59 \times 59)}{3481}$		$\begin{array}{\|c} \mathbf{3 7 4 1} \\ (87 \times 43) \end{array}$		$\underset{(87 \times 59)}{5133}$		7569 （87×87）		$\begin{aligned} & \text { 定格 } \\ & \text { 世ル } \\ & \text { トルク } \\ & \text { rg } \end{aligned}$
	2．5／3．0		2．3／2．8		2．1／2．5		1．78／2．14		1．57／ 1.88		1．50／1．79		1．48／1．77		1．22／1．47		1．20／1．44		1．01／1．22		1．00／1．20		$0.88 / 1.05$		$0.81 / 0.97$		$0.73 / 0.87$		$0.59 / 0.71$		$0.59 / 0.71$		0．49／0．59		0．43／0．52		0．40／0．48		0．29／0．35		0．20／0．24		
	枠番	$\begin{aligned} & \text { 入力 } \\ & \text { kW } \end{aligned}$	枠番	$\begin{array}{\|l\|l\|} \hline \text { 入力 } \\ \text { kW } \end{array}$	枠番	$\begin{array}{\|l\|} \hline \text { 入力 } \\ \text { kW } \\ \hline \end{array}$	枠番	$\begin{array}{\|l\|l\|} \hline \text { 人力 } \\ \text { kW } \\ \hline \end{array}$	枠番	$\begin{array}{\|l\|} \hline \text { 人力 } \\ \text { kW } \end{array}$	棹番	$\begin{aligned} & \text { 六 } \\ & \text { kW } \end{aligned}$	伜番	$\begin{aligned} & \mathrm{\lambda} 力 \\ & \mathrm{kw} \end{aligned}$	枠番	$\begin{aligned} & \lambda 力 \\ & \mathrm{k} \boldsymbol{\prime} \end{aligned}$	枠番	$\begin{aligned} & \text { 入力 } \\ & \mathrm{kw} \end{aligned}$	枠番	$\begin{array}{\|l\|} \mathrm{\lambda} 力 \\ \mathrm{~kW} \end{array}$	枠番	$\begin{aligned} & \text { 人力 } \\ & \text { kW } \end{aligned}$	枠番	$\begin{array}{\|l\|} \hline \text { 入力 } \\ \text { kw } \end{array}$	枠番	$\begin{aligned} & \text { } \lambda t \\ & \text { kW } \end{aligned}$	枠番	$\begin{aligned} & \lambda 力 \\ & \mathrm{~kW} \end{aligned}$	枠番	$\begin{aligned} & \text { र力 } \\ & \text { kW } \end{aligned}$	枠番	$\begin{aligned} & \lambda 力 \\ & \text { kW } \end{aligned}$	枓番	$\begin{aligned} & \text { 入力 } \\ & \text { kW } \end{aligned}$	枠番	$\begin{aligned} & \text { 入力 } \\ & \text { kW } \end{aligned}$	枠番	$\begin{aligned} & \text { 人力 } \\ & \text { kW } \end{aligned}$	枠番	$\begin{aligned} & \text { 入力 } \\ & \text { kW } \end{aligned}$	枠番	$\begin{aligned} & \text { 入力 } \\ & \mathrm{kW} \end{aligned}$	
	184108	0.4	184108	0.4	184108	0.4	184108	0.4	184108	0.4	184108	0.4	18410B	0.4	184108	0.4	184108	0.4	184108	0.4	18410B	0.4	184108	0.4	184108	0.4	184108	0.4	18410B	0.4	18410B	0.4	184108	0.4	18410B	0.4	184108	0.4	18410B	0.4	184108	0.4	60
	18410A	0.4	72																																								
	18510A	0.75	18510A	0.75	18510A	0.4	185i0A	0.4	18510A	0.4	18510A	0.4	18510A	（0．4）	18510A	0.4	90																										
	18610B	0.75	186108	0.75	186108	0.75	186108	0.4	18610B	0.4	186108	0.4	186108	0.4	18610B	0.4	186108	0.4	186108	0.4	18610B	0.4	186108	0.4	186108	0.4	186108	0.4	18610B	0.4	186108	0.4	186108	0.4	186108	0.4	186108	0.4	$18610 B$	0.4	186108	0.4	120
	18610A	0.75	18610A	0.4	144																																						
	187108	1.5	187108	0．75．	187108	0.75	187108	0.75	187108	0.75	187108	0.75	187108	0.75	187108	0.75	187108	0.75	187108	0.4	18710B	0.4	18710B	0.4	187108	0.4	187108	0.4	18710 B	0.4	18710B	0.4	187108	0.4	187108	0.4	187108	0.4	18710B	0.4	18710B	0.4	200
	18710A	1.5	18710A	1.5	18710A	（0．75）	18710A	0.75	18710A	0.4	250																																
	188108	1.5	188108	1.5	188108	1.5	188108	$\left\|\begin{array}{c} 0.75 \\ 1.5 \end{array}\right\|$	188108	0.75	188108	0.75	188108	0.75	188108	0.75	188108	0.75	${ }^{188108}$	0.75	188108	0.75	188108	0.75	188108	0.75	188108	0.4	18810B	0.4	18810B	0.4	18810B	0.4	188108	0.4	18810B	0.4	188108	0.4	188108	0.4	300
	18810A	1.5	18810A	1.5	18810A	1.5	884A	1.5	18810A	1.5	18810A	$\left(\left.\begin{array}{c} 0.75 \\ 1.5 \end{array} \right\rvert\,\right.$	18810A	$\left.\begin{array}{\|c\|} \hline 075 \mid \\ 1.5 \end{array} \right\rvert\,$	18810A	0.75	18810A	0.4	360																								
	894B	$\begin{array}{\|l\|} \hline 1.5 \\ 2.2 \\ \hline \end{array}$	189118	$\begin{aligned} & 1.5 \\ & 2.2 \end{aligned}$	18911B	$\begin{aligned} & (1.55 \\ & 2.2 \end{aligned}$	8948	$\begin{gathered} 11.5) \\ 2.2 \\ \hline \end{gathered}$	18911B	1.5	18911B	1.5	8948	1.5	894B	1.5	18911B	1.5	18911B	1.5	18911B	1.5	18911 B	1.5	18911B	0.75	18911B	0.75	189118	0.75	189118	0.75	189118	0.75	189118	0.75	18918	0.75	189118	0.75	189118	0.75	560
	894A	$\begin{aligned} & 2.2 \\ & 3.7 \end{aligned}$	18911A	$\begin{array}{\|c} 12.2 \mid \\ 3.7 \\ \hline \end{array}$	894A	（2，2）	894A	2.2	18911A	$\left\|\begin{array}{c} 11.5) \\ 2.2 \end{array}\right\|$	18911A	$\begin{array}{\|r\|} \hline 11.5) \\ 2.2 \\ \hline \end{array}$	894A	$\begin{array}{\|c\|} \hline 1.55 \\ 2.2 \\ \hline \end{array}$	894A	1.5	894A	1.5	18911A	1.5	894A	1.5	18911A	1.5	894A	｜0．75．	18911A	（0．75）	18911A	0.75	720												
	9048	$\begin{array}{\|r} (3.7) \\ 5.5 \\ \hline \end{array}$	904B	3.7	904B	$\begin{aligned} & 2.2 \\ & 3.7 \\ & \hline \end{aligned}$	9048	$\begin{aligned} & 2.2 \\ & 3.7 \\ & \hline \end{aligned}$	904	$\begin{aligned} & 2.2 \\ & 3.7 \end{aligned}$	904B	$\begin{gathered} (2.21 \\ 3.7 \end{gathered}$	9048	$\left\|\begin{array}{c} 12.21 \\ 3.7 \end{array}\right\|$	904B	2.2	904B	2.2	9048	$\begin{array}{\|c\|} \hline 1.5) \\ 2.2 \\ \hline \end{array}$	9048	1.5	9048	1.5	904B	1.5	9048	1.5	904B	1.5	904B	1.5	904B	1.5	1000								
	904A	5.5	904A	$\begin{array}{\|c} 13.7) \\ 5.5 \\ \hline \end{array}$	904A	［3．7）	906A	3.7	904A	3.7	904A	3.7	904A	3.7	904A	$\left.\begin{array}{\|c\|} \hline 1.27 \\ 3.7 \end{array} \right\rvert\,$	904A	$\begin{array}{\|c\|} \hline(2.2) \\ 3.7 \\ \hline \end{array}$	904A	2.2	904A	2.2	904A	2.2	904A	1.5	904A	1.5	904 A	1.5	904A	1.5	1200										
α			916B	5.5	916B	$\begin{aligned} & 3.7 \\ & 5.5 \end{aligned}$	9168	$\begin{array}{\|c\|} \hline(3.7) \\ 5.5 \end{array}$	916B	3.7	916B	3.7					916B	3.7	916B	$\left.\begin{array}{\|c\|} \hline 1.21 \\ 3.7 \end{array} \right\rvert\,$	916B	2.2	916B	2.2	916B	2.2	916B	2.2	916	2.2	916B	2.2	916B	2.2	916B	2.2	916 B	2.2	916B	2.2	9168	2.2	1500
			916A	$\begin{array}{\|l} \hline(5.5) \\ 7.5 \\ \hline \end{array}$	916A	（5．5）	916 A	5.5	916A	$\begin{array}{\|c\|} \hline 13,7) \\ 5.5 \\ \hline \end{array}$	916A	$\begin{array}{\|c} 13.7 \mid \\ 5.5 \\ \hline \end{array}$					916 A	3.7	916A	3.7	916A	3.7	916 A	3.7	916A	（2．2）	916A	2.2	916A	2.2	916A	2.2	916A	2.2	916 A	2.2	916A	2.2	916A	2.2	916A	2.2	1800
			${ }^{928 B}$	$\begin{array}{\|c\|c\|} \hline 7.5) \\ 110 \end{array}$	928B	$\begin{array}{l\|} \hline 5.5 \\ (7.5) \end{array}$	928B	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	928B	$\begin{array}{\|c\|} \hline 5.5) \\ 7.5 \end{array}$	928B	$\begin{array}{\|c\|} \hline(5.5) \\ 7.5 \\ \hline \end{array}$					9288	5.5	928B	$\begin{array}{\|c\|} \hline 13.7) \\ 5.5 \\ \hline \end{array}$	928B	3.7	928B	3.7	${ }^{9288}$	3.7	928B	3.7	${ }^{928 B}$	3.7	928B	3.7	${ }^{9288}$	3.7	928B	3.7	9288	3.7	9288	3.7			2500
			928A	$11(5$	928A	$\left.\begin{array}{\|c\|} \hline 7.5 \\ 110 \end{array} \right\rvert\,$	928A	$\left\|\begin{array}{c} 7.5 \\ 11(1) \\ \hline \end{array}\right\|$	928A	7.5	928A	7.5					928A	$\begin{array}{\|c\|} \hline 15.5) \\ 7.5 \\ \hline \end{array}$	928A	5.5	928A	5.5	928A	（3．7）	928A	3.7			3000														
			9398	$\begin{aligned} & 11 \\ & 11.5) \\ & 22 \\ & \hline \end{aligned}$	9398	$\begin{gathered} 11 \\ (15) \end{gathered}$	9398	$\begin{array}{\|l\|} \hline 11 \\ 15 \\ \hline \end{array}$	9398	$\left.\begin{array}{\|c} 7.5 \\ 1015 \\ 15 \end{array} \right\rvert\,$	9398	$\left.\begin{array}{\|c} 7.5 \\ 1011 \\ 10 \end{array} \right\rvert\,$					9398	$\left.\begin{array}{\|c\|} \hline 7.5) \\ 11 \end{array} \right\rvert\,$	9398	$\left\|\begin{array}{c} 5.5 \\ 1.5) \\ 11 \end{array}\right\|$	9398	7.5	9398	$\begin{array}{\|l} 5.5 \\ 7.5 \\ \hline \end{array}$	9398	$\left.\begin{array}{\|c\|} \hline 5.5) \\ 7.5 \end{array} \right\rvert\,$	939B	5.5	${ }^{9398}$	5.5	9398	5.5	9398	5.5	9398	5.5	9398	5.5	9398	5.5	${ }^{9398}$	5.5	5000
			939A	22	939A	$\begin{aligned} & 15 \\ & 22 \\ & \hline \end{aligned}$	939A	$\begin{array}{\|c\|} \hline 155 \\ 22 \\ \hline \end{array}$	939A	15	939A	15					939A	$\begin{array}{\|c\|} \hline(11) \\ 15 \\ \hline \end{array}$	9394	11	939A	$\begin{array}{c\|} 7.5 \\ 11 \end{array}$	939A	7.5	939A	7.5	6000																

3．入力kWに（1）つついた機種は連結台付 （HJM•VJM）または台板付となります のでご照会ください。
4．表6以外の中間減速比についても製作できる場合がありますのでご照会 ください。

174，210，258，354，522

〔選定例〕

減速比121，電源周波数50Hz，電動機直結形 て設定トルク 110 kgf •mが必要な場合。
て設定トルク $110 \mathrm{kgf} \cdot \mathrm{m}$ か必要な場合。
－まず設定トルク $110 \mathrm{kgf} \cdot \mathrm{m}$ な満足するる定
－まず設定トルク $110 \mathrm{kgf} \cdot \mathrm{m}$ を満足する定格
出力トルク $120 \mathrm{kgf} \cdot \mathrm{m}$ と娍速比 121 の交点 の㯗より下記のデータを抽出します。
枠番 18611B
入力（電動機容量） $1.5, ~(2.2) \mathrm{kW}$
－次に設定トルクに対する電動機容量をチェックします。 （（選定要領）第2項50 5 Hzt地区参照）
1.5 kW の場合

Tmax $=0.520 \cdot \mathrm{P} \cdot \mathrm{Z}=0.520 \times 1.5 \times 121=94 \mathrm{kgf} \cdot \mathrm{m}$ となり設定トルクを満足できません。
（2．2）kWの場合
Tmax $=120 \mathrm{kgf} \cdot \mathrm{m}$（定格出カトルク）となり設定トルクを満足しますので（2．2）kWを選定します。

減速比 3179～109091 表7．トルクリミッタ付サイクロ減速機3段形標準機種

〔選定要領〕

> - 〕内はサイクロ減速機体番, 減速比固有の定格出カトルクです。(〕のない機種は
> 2.設定値か定格出カトルクになります。

設定トルクは定格出カトルク以内として
シさい。ただして付の機稙以内としてください

〔選定例〕

$$
\begin{aligned}
& \text { 減速比12427, 設定トルク330kg•mが必要な場合。 } \\
& \text {-設定トルク } 33 \mathrm{kgf} \cdot \mathrm{~m} \text { を満足するる定格出力トルク } \\
& \text { 360kgf•mと減速比12427の交点の欄より下記のテ } \\
& \text {-夕を抽出します。 } \\
& \text { 枠番 } \\
& \text { 入力 (電動機容量) }{ }^{1881008 \mathrm{~A}} 0.4 \mathrm{~kW}
\end{aligned}
$$

31433$(43 \times 43 \times 17)$		38291$(59 \times 59 \times 11)$		43129 （ $59 \times 43 \times 17$ ）		51765 $(87 \times 35 \times 17)$		63597$(87 \times 43 \times 17)$		79507$(43 \times 43 \times 43)$		87261 $(87 \times 59 \times 17)$		109091 $(59 \times 43 \times 43)$		定格 出力 トルク $\mathrm{kgf} \cdot \mathrm{m}$
$0.0477 / 0.0573$		$0.0392 \quad 0.0470$		$0.0348 / 0.0417$		$0.0290 / 0.0348$		$0.0236 / 0.0283$		$0.0189 / 0.0226$		$0.0172 / 0.0206$		0．0137／0．0165		
枠 番	入力	枠 番	入力	枠 番	入力	枠 番	$\begin{aligned} & \lambda 力 \\ & \text { kW } \end{aligned}$	枠 番	人力	枠 番	入力	杵 番	入力	枠 番	入力	
$1841008 B$	0.1	1841008B	0.1	1841008B	0.1	1841008B	0.1	1841008B	0.1	$1841008 B$	0.1	1841008B	0.1	1841008B	0.1	60
1841008A	0.1	72														
1851008A	0.1	90														
1861008B	0.2	$1861008 B$	0.1	1861008B	0.1	120										
1861008A	0.2	1861008A	0.1	144												
1871008B	0.2	1871008B	0.2	1871008B	0.2	$1871008 B$	0.2	1871008B	0.2	1871008B	0.2	1871008B	0.2	1871008B	0.2	200
1871008A	0.2	250														
1881008B	0.2	1881008B	0.2	1881008B	0.2	1881008B	0.2	$1881008 B$	0.2	1881008B	0.2	1881008B	0.2	1881008B	0.2	300
1881008A	0.2	360														
$1891108 B$	0.4	1891108B	0.4	1891108B	0.4	1891108B	0.4	$1891108 B$	0.4	$1891108 B$	0.2	$1891108 B$	0.2	1891108B	0.2	560
1898409A	0.4	1891108 A	0.4	1891108A	0.4	1891108A	0.4	1891108A	0.4	1898409A	0.2	1891108A	0.2	1891108A	0.2	720
9040B	0.4	9040 B	0.4	9040B	0.4	1000										
9040A	0.4	1200														
9163B	0.75	9160B	0.4	1500												
9163A	0.75	9160A	0.4	1800												
9282B	0.75	9282B	0.4	2500												
9282 A	0.75	9282A	0.4	3000												
1938911 B	1.5	1938911 B	0.75	1938911 B	0.75	1938911 B	0.75	5000								
1938911 A	1.5	1938911 A	0.75	1938911 A	0.75	1938911 A	0.75	6000								

図10． $\mathrm{HM}-210, ~ 211-\mathrm{TL}$

図11．HM－84～89－TL

図12．HJM－86～88－TL

－電動機…（1）全閉外扇力ゴ形三相誘導電動機•200V $50 / 60 \mathrm{~Hz}, 220 \mathrm{~V} 60 \mathrm{~Hz}$ ，連続定格 $0.2 \sim 3.7 \mathrm{~kW}$ E種， $5.5 \sim 22 \mathrm{~kW}$ B種， $30 \mathrm{~kW} \mathrm{~F} \mathrm{種 絶 緑}$ （2）0．2kW標準電動機は端子箱なしですが，端子箱付も製作可能です。表中の」寸法（）は端子箱付く別途ご指示くだ さいゝの寸法です。
（3）寸法DMJLは本表と多少異なることがありますので，寸法に制限がある場合はご照会ください。

- 低速軸D寸法…寸法公差はJIS B0401－1976＂h6＂です。
- キ－…JIS B1301－1976平行キーに依っています。
- 潤滑方式…G：グリース潤滑 PB：油浴式潤滑
- 標準塗装色…マンセル5B5／2
- 本寸法図の寸法，仕様は予告なi．に変更することがあります。

図13．HM－18410，18510，18610，18710，18810－TL

図14．HM－18611，18711，884，18911，894－TL

図15．HM－904，906，916，917，928，939－TL

－電動機…（1）全閉外扇力ゴ形三相誘導電動機•200V $50 / 60 \mathrm{~Hz}, 220 \mathrm{~V} 50 \mathrm{~Hz}$ ，連続定格，0．4～3．7kW E種，5．5～22kW B種，30kW F種絶緑 （2）寸法DM，J，Lは本表と多少異なることがありますので，寸法 に制限がある場合はご照会ください。

- 低速軸D寸法…寸法公差はJIS B0401－1976＂h6＂です。
- キ 一…JS B1301－1976平行キーに依っています。
- 潤滑方式…G：グリース潤滑 PB：油浴式潤滑
- 標準塗装色…マンセル5B5／2
- 本寸法図の寸法，仕様は予告なしに変更することがあります。

図 16 ．

A－A
α^{0} は電動機の端子箱の位置です。

図16－1．VM－1841008－TL VM－1851008－TL VM－1861008－TL

C～
図16－2．VM－1871008－TL VM－1871108－TL VM－1881008－TL VM－1888409－TL

C～
図16－3．VM－1891108－TL VM－1898409－TL VM－9040－TL VM－9284－TL
－電動機••（1）全閉外扇カゴ形三相誘導電動機，200V $50 / 60 \mathrm{~Hz}, 220 \mathrm{~V} / 60 \mathrm{~Hz}$連続定格，0，1kWは全閉カゴ形三相誘導電動機 $0.1 \sim 3.7 \mathrm{~kW}$ E種絶緑
（2） $0.1, ~ 0.2 \mathrm{~kW}$ 標準電動機は端子箱なしですが，端子箱付も製作可能です。表中のJ寸法（ ）は端子箱付〈別途ご指示〈ださい〉 の寸法です。
（3）寸法DM，J，Lは本表と多少異なることがありますので，寸法に制限がある場合はご照会ください。

[^0]

8．寸法図
 H形（横形，両軸形）1－段形

図17． $\mathrm{H}-210,211-\mathrm{TL}$

$B-B$

図18．H－84～89－TL

- 低速軸D寸法，高速軸D＇寸法…寸法公差はJIS BO401－1976＂h6＂です。
- キ－…JS B1301－1976平行キーに依っています。
- 潤滑方式…G：ダリース潤滑 PB：油浴式潤滑
- 標準塗装色…マンセル5B5／2
- 本寸法図の寸法，仕様は予告なしに変更することがあります。

図	形 式	C	DC	E	F	G	M	N	H	Y	A	$\begin{array}{c\|} \hline \mathrm{P} \\ \left(\mathrm{P}_{\mathrm{L}}\right) \end{array}$	Q	R	V	d	低速軸端寸法							高速䡒寸法					L	重量	$\begin{aligned} & \text { 䁶河 } \\ & \text { 方 } \end{aligned}$
																	D	b	－	＋	，	S	ℓ_{2}	D＇	b	h	t^{\prime}	ℓ_{1}			
17	H－210－TL	112	182	90	170	60	135	200	312	298	53	$\left\|\begin{array}{r} 15 \\ 130 \end{array}\right\|$	15	12	45	11	28	8	7	4	35	－	－	15	5	5	3	25	208	25	G
17	H－211－TL	140	240	140	240	82	180.	280	361	298	30	20	20	15	55	14	38	10	8	5	55	－	－	18	6	6	3.5	35	259	40	G
18	H－84－TL	160	265	170	320	100	220	360	411	332	${ }_{-13}^{*}$	25	20	22	65	18	50	14	9	5.5	70	10	18	22	6	6	3.5	40	32	69	PB
18	H－86－TL	200	370	210	400	139	290	440	494	392	18	40	20	25	75	18	60	18	11	7	90	M10	18	30	8	7	4	45	41	118	PB
18	H－87－TL	50	414	275	440	125	335	490	598	466	45	30	25	30	64	22	70	20	12	7.5	90	M 12	24	35	10	8	5	55	477	186	PB
18	H－88 TL	265	476	320	480	145	380	530	633	466	51	30	25	30	90	22	80	22	14	9	110	M 12	24	40	12	8	5	65	52	227	PB
18	H－89－TL	335	572	380	620	170	440	680	805	626	78	30	30	35	110	26	95	25	14	9	135	M20	34	45	14	9	5.5	70	620	435	PB
図	形 式	C	DC	E	F	G	M	N	H	Y	A	$\begin{gathered} P_{1} \\ \left(\mathrm{P}_{1}\right) \end{gathered}$	Q	R	V	d	D	低	速	軠 端	耑 寸	$\begin{array}{\|l} \mathrm{S} \\ \hline \text { 法 } \\ \hline \end{array}$	ℓ_{2}	D＇	$\mathrm{b}^{\text {b }}$	$\mathrm{h}^{\text {＋}}$	寸法	ℓ_{1}	L	$\begin{aligned} & \text { 重量 } \\ & (\mathrm{kg}) \end{aligned}$	$\begin{array}{\|l\|} \hline \text { 閒淂 } \\ \text { 方式 } \end{array}$

図19．H－18410，18510，18610，18611，18710，18711，18810，884，18911，894－TL
（18611，18711，884，18911，894のみオイルゲージ付）

- 低速軸D寸法，高速軸 D^{\prime} 寸法…寸法公差は肘 B0401－1976＂h6＂です。
- キ 一…JS B1301－1976平行キーに依っています。
- 潤滑方式…G：グリース潤滑 PB：油浴式閛滑

8．寸法図
 H形（横形，両軸形）2•段形

図20．H－904－TL

図21．H－906～939－TL

A－A

- 低速軸的寸法，高速軸D＇寸法…寸法公差はUS B0401－1976＂h6＂です。
- キ－…JS B1301－1976平行キーに依っています。
- 潤滑方式…G：グリース潤滑 PB：油浴式潤滑

図	形 式	C	DC	E	F	G	M	N	$\begin{gathered} \mathrm{H} \\ \left(\mathrm{H}_{1}\right) \end{gathered}$	Y	A	P	Q	R	v	d	低速輪湍寸法							高速蟿緛寸法					L	$\begin{aligned} & \text { 重量 } \\ & (\mathrm{kg}) \end{aligned}$	娍滑式
																	D	b	h	t	ℓ	S	ℓ_{2}	D	${ }^{\prime}$	h^{\prime}	t^{\prime}	$\ell 1$			
20	H－904B－TL	290	505	240	560	215	560	620	$\begin{aligned} & 541 \\ & (6611) \end{aligned}$	332	13	40	30	40	100	26	110	28	16	10	170	M20	34	22	6	6	3.5	40	762	419	PB
20	H－904A－TL																														
21	H－906B－TL	290	505	240	560	215	560													10											
21	H－906A－TL							620	(611)	392	18	40	30	40	100	26	110	28	16		170	M20	34	30	8	7	4	45			P
21	H－916B－TL													40	105		120	32	18		210										PB
21	H－916A－TL	325	575	250	630	290	600	690	$\left\|\begin{array}{c} 619 \\ (700) \end{array}\right\|$	392	18	50	30			26				11		M24	42		8						
21	H－917B－TL	325												40		26	120				210										PB
21	H－917A－TL		572	250	630	290	600	690	$\begin{aligned} & 673 \\ & (700) \end{aligned}$	466	45	50	30		105			32	18	11		M24	42	35	10		5		936	655	
21	H－928B－TL																														
21	H－928A－TL	420	720	330	800	372	810	880	(884)	466	58	75	40	50	143	39	140	36	20	12	250	V30	52	40	12		5	65			
21	H－939B－TL																														
21	H－939A－TL	540	950	420	1050	485		160	（1161）	626	78		Ss	60	． 200	45	180	45	25	15	330	V30	52	45	14	9	5.5	70	1504	2665	PB
図	形 式	C	DC	E	F	G	M	N	$\underset{\substack{\mathrm{H} \\\left(\mathrm{H}_{2}\right.}}{\text {（1）}}$	Y	A	P	Q	R	v	d	D	低	h	＋	＋	S	ℓ_{2}	D	b^{\prime}	h^{\prime}	t＇	ℓ_{1}	L	重量	㳔滑
																d		低	速	軸	耑寸	法			高速䡋	旪端	寸法			（kg）	方式

9．応用製品例

水処理•化学•薬品•食品分野に最適
擋拌•混合•反応槽用サイクロ®減速機

－3VM，4VM，5VM，7VM，8VMシリーズは
水処理，化学，楽品，食品などの撹抖，混合，反応橧用と して特別に設計されたサイクロ減速機です。
槽の上部に取付け撹䢁軸に直結させるだけで使用できます。
低速高トルクで負荷トルクの検出•制御に

トルクセンサー付

コンパワ—®遊星歯車減速機
（カタロクNo．C162）
－コンバクトなから大トルク を伝達できるコンバワー ${ }^{8}$ 遊星攀車減速機の高速側に，ト ルクセンサー内蔵形サイクロ減速機を直結した，低速高卜 ルク形ギヤードモータです。 シックナ，クラリファイヤの みならず，低速高トルクで負荷トルクの検出及び制御の必要なあらゆる用途にこ利用で きます。

万一水没状態にあっても運転可能

除塵機用冠水形サイクロ ${ }^{\circledR 1}$ 減速機
（カタロケNo．C127）

－水処理施設の中でポンプ場は，大雨•台風時の洪水によ って処理設備全体が一時的に水没することがあります。 このような水没状態にあっても各種駆動装置は運転される ことがありますが「冠水形サイクロ減速機」は，一時的に水没状態が生じても運転可能なように設計されています。

コンパクトな設計，優れた機能沈殿池汚泥搔寄機用
センターポスト形サイクロ®減速機

－水処理駆動装置の減速機として多くの実績を持つサイク ロ減速機に，内歯歯車を組み合わせた，コンパクトなセン ターポスト形サイクロ減速機です。
水処理設備駆動装置の安全運転を万全に軸昇降装置付サイクロ ${ }^{(8)}$ 減速機

－水処理設備のシックナなどで駆動装置の安全運転を万全 にするために，トルクリミッタ付サイクロ減速機と出力軸昇降装置付の歯車減速機をコンパクトに直結させたセンタ ーシャフト形の駆動装置です。

インバータ駆動に最適！

インバータ用＂AFモータ＂直結 トルクリミツタ付サイクロ ${ }^{\text {®減速機 }}$

本 社 東京都千代田区大手町2丁目2番1号（新大手町ビル）

標準機械事業本部

営 㸁 所
東 京 東京都干代田区神田美土代町1番地（住商美土代ビル）〒101 TEL．（03）233－9508～9，9481～9 FAX．（03）233－9630
大 阪 大阪市東区北浜5丁目15番地（住友ビル）〒541 TEL．（06）223－7117～25 FAX．（06）223－7145
札 悓 札幌市中央区大通西7丁目1番地（干代田生命ビル）〒050 TEL．（011）231－3731 FAX．（011）222－2950
仙 台 仙台市一番町4丁目7番17号（小田急仙台ビル）〒980 TEL．（0222）63－2855 FAX．（0222）63－5491
横 浜 横浜市中区日本大通り60番地（朝日生命横浜ビル）〒231 TEL（045）664－5781 FAX．（045）664－5785
静 岡 静岡市呉服町1丁目6番11号（住友生命ビル）〒420 TEL．（0542）54－7478～9 FAX．（0542）51－1798
豊 橋 豊 橋 市八町通2 丁目30番地（日豊ビル）〒440 TEL．（0762）61－3551 FAX．（0762）61－3561
神 戸 神戸市中央区中町通2丁目3番2号（住友生命ビル）〒650 TEL．（078）361－1661 FAX．（078）361－1615
岡 山 岡山市幸町8番22号（住友海上火災ビル）〒700 TEL．（0862）25－3167 FAX．（0862）31－5704
広 島 広島市中区八丁堀5番7号（住友生命広島入丁堀ビル）〒730 TEL．（082）223－5541 FAX．（082）227－5771
福 岡 福岡市中央区天神2丁目14番8号（天神センタービル）〒810 TEL．（092）771－7871 FAX．（092）712－8319
八 幡 北九州市八幡東区中央2丁目10番8号（住商ビル）〒805 TEL．（093）662－1281 FAX．（093）662－1282
新 居 浜 愛 援 県 新 居 浜 市 忽 開町5 番 2 号 〒792 TEL．（0897）35－2078 FAX．（0897）34－1303
精機貿易部 東京都干代田区神田美土代町1番地（住商美土代ビル）〒101 TEL．（03）233－9491 FAX．（03）233－9630
名古屖製造所 大 府 市 朝 日 町 6 T 目 1 番 地 〒474 TEL．（0562）48－5 243 FAX．（0562）48－2161

[^0]: - 低速軸D寸法…寸法公差はIIS B0401－1976＂h $6^{\prime \prime}$ です。
 - 外カバーD3 寸法…寸法公差はJIS B0401－1976＂ f 8 ＂です。
 - キ－…JIS B1301－1976平行キーに依っています。
 - 潤滑方式…G：グリース潤滑
 - 標準塗装色…マンセル5B5／2
 - 本寸法図の寸法，仕様は予告なしに変更することがあります。

